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Abstract—Recent advances in big data processing and mobile
edge computing (MEC) have demonstrated the feasibility of
further performance improvement on wireless caching via ex-
ploiting contextual information, like mobility-aware caching.
However, most related works either focus on the utilization of
single contextual information or ignore the impact of social
network on reshaping a user’s behavior when integrating various
context data. In this work, a context-aware caching scheme with
social behavior that integrates various contextual information
is proposed for MEC-enabled small cell networks (SCNs), with
a novel model provided to characterize how social networks
influence and reshape behaviors. Based on a multi-armed bandit
algorithm, a user’s behavior patterns such as its mobility pattern,
preference towards different files and the amount of traffic it
may consume in each time slot are learned under the impact
of social relationships. Numerical results and comparisons show
that the proposed caching scheme outperforms normal context-
aware caching schemes by more than 30% in terms of backhaul
data offloading ratio.

I. INTRODUCTION

The unprecedented global growth of mobile data traffic has

become the performance bottleneck of 5G networks and it is

predicted by [1] that such an explosion of data traffic will be

continuous and more fierce in the future. Traditional network-

centric methods like network densification and frequency

division multiplexing are not the economical and efficient

ways to address the issue because of the limited capability

of backhaul links and the high deployment costs.

Caching at the edge has been widely recognized as a

promising method to alleviate the burden of backhaul links and

tackle the aforementioned challenge. Equipped with storage,

small base stations (SBSs) can serve their subscribers without

backhaul congestion if it has already cached the requested

files. Exploiting user’s request pattern, [2] studied caching

scheme by modeling content popularity follows Zipf distri-

bution. The authors of [3] proposed their caching schemes for

heterogeneous cellular networks considering the interference

among BSs on the basis of stochastic geometry theory. In

[4], the tradeoff between transmission diversity and content

diversity in cluster-centric cooperative SCNs was discussed.

All these works showed that, integrated with fundamental

user context information (e.g., the overall user preferences),

wireless caching can achieve a higher performance.

In recent years, with the progress of big data processing

and MEC, mobile edge networks are not just cache-enabled,

but also able to analyze the huge amount of collected Radio

Access Network (RAN) context data through machine learning

tools in real time, which paves the ways for a more intelligent

caching decision. In [5], mobility-aware caching scheme was

proposed for MEC-enabled SCNs on the basis of an inter-

contact model that characterizes user mobility by the length of

sojourn time. The authors of [6] proposed a social-aware dis-

tributed caching strategy for device-to-device (D2D) networks,

where the closeness between users are measured by both their

physical distance and the social relationships. Although these

recent works have provided valuable insights into context-

aware caching schemes in in cellular networks and D2D

systems, they only focus on single contextual information. It

was showed by [7] that popularity and mobility aware caching

can achieve a high performance by integrating more RAN

context data simultaneously. However, [7] actually studied

different user contextual information separately and assumed

these contexts to be independent, which is unreasonable under

the influence of social networks.

Motivated by above insights and shortcomings, in this

paper, we propose a context-aware caching scheme with social

behavior for a MEC-enabled SCN, where various contextual

information such as, a user’s mobility pattern, preference

towards files, the amount of its consumed traffic and its

social relationships will be jointly considered. Furthermore, a

novel model that characterizes how social networks influence

and reshape an individual’s behavior patterns is provided

for a more reasonable analysis and integration of various

contexts. Based on a multi-armed bandit algorithm[7], a SBS

periodically updates its cache in each time slot according to the

mappings between user types and the corresponding behavior

patterns unknown a priori. The main contributions of this paper

are summarized as follows:

• We propose a context-aware caching scheme with social

behavior for MEC-enabled SCNs, aimming to maximize

offloaded backhaul data.

• A novel model is provided to characterize how social

networks influence and reshape an individual’s behavior
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Fig. 1: An illustration of a one-tiered SCN, where some users

move in a group and others move alone.

patterns on the basis of the intensity of the social ties

between users.

• Numerical results are obtained under different settings.

Comparisons demonstrate that the proposed caching

scheme outperforms normal context-aware caching

schemes in terms of cumulative offloaded backhaul data,

traffic offloading ratio and storage efficiency.

The remainder of this paper is organized as follows. Section

II describes the system model, including network model, user

behavior patterns model and a novel model characterizing the

impact of social networks on a user’s behavior patterns. In

Section III, the investigated problem is formulated, with the

optimal caching decisions obtained through a fundamental

reinforcement learning algorithm. In Section IV, numerical

results are illustrated and performance comparisons are con-

ducted. Finally, conclusions are summarized in Section V.

II. SYSTEM MODEL

In this section, we first present the network model and then

introduce the user behavior patterns model. Finally, a novel

model is provided to characterize the impact of social networks

on a user’s behavior patterns.

A. Network Model

As shown in Fig. 1, we consider a one-tiered SCN, where

each SBS is equipped with a MEC server to collect various

RAN context information and cache files more intelligently.

The MEC server can store up to M files out of the whole

content library that consists of F files. Let F = {1, 2, . . . , F}
denotes the set of file indices. Therefor, the following equation

is derived:

M = θF, (1)

where 0 < θ < 1 indicates the storage capacity of a MEC

server and we henceforth call θ the storage capability coef-
ficient. Without loss of generality, we assume that there are

NS SBSs deployed in the area with U active users, and the

coverage areas of the these SBSs are non-overlapping. The set

of user indices is denoted by U = {1, 2, . . . , U}. A user will

be served by a specific SBS if he or she is in its coverage.

When the serving SBS has already cached the file that the user

is requesting, no additional traffic load is put on the backhaul

and the user can enjoy the high transmission rate. Otherwise,

the SBS has to download the file from the core network, which

results in a heavy burden on backhaul links.

B. User Behavior Patterns Model

According to [7], users can be divided into different types

based on personal characteristics which may, for example, be

demographic factors (e.g., age, gender), personality, job and

so on. Furthermore, [7] assumed that each user type maintains

a specific mapping to content popularity that is unknown a

priori. In this work, we extend the aforementioned assumption

and suppose that there are mapping relationships, which are

unknown a priori and needed to be learned, between user types

and behavior patterns. Additionally, we also assume that users

are divided into K types based on their personal information,

and let K = {1, 2, . . . ,K} indicates the set of type indices.

We describe a user’s behavior patterns by its mobility

pattern, preferences towards files and the amount of consumed

data traffic in each time slot. In terms of mobility pattern

modeling, similar to that of [8], location-based model is

applied to capture a user’s moving preference. Specifically,

we use a matrix P of size NS × NS × K to denote the set

of the transition probability, where 0 ≤ pki,j ≤ 1 indicates the

probability of a user who belongs to k-th type leaves SBS i for

SBS j in each time slot. In particular, i = j, i.e., pki,i means

the probability of a user who belongs to k-th type stay in SBS

i in each time slot.

As for the file preferences, in the same vein, a matrix Q
of size F × K is provided to denote the set of the request

probability of each file, where 0 ≤ qkf ≤ 1 indicates the the

request probability of a user of k-th type for the file f. In

terms of the amount of consumed data traffic in each time

slot, let a vector D = [d1, d2, ..., dK ] denotes the set of the

amount of consumed data traffic of each user type, where dk
indicates the amount of consumed data traffic of a user who is

k-th type. To sum up, there exist a specific type ku ∈ K for a

user u and therefore the corresponding behavior patterns can

be described by pku
i,j , qku

f and dku . We henceforth call 4-tuple

(ku, p
ku
i,j , q

ku

f , dku) the tuple of behavior patterns for a user u.

C. Impact of Social Networks on Behavior Patterns

We use a directed, weighted complete graph G = (V,E) to

express a social network, where V is the set of users, with

|V | = U . The edges in E represent the relationships between

users and the corresponding edge weights indicate the intensity

of the social ties between users. Formally, a matrix W of size

NS × NS is used to denote the set of edge weights, where

0 ≤ wi,j ≤ 1 reflects the degree of how friendly is user i to

user j, or in other words, the personal influence of user j on

user i. The value of W can actually be quantified through

the analysis on the data trace collected from social platforms,

such as Facebook, Twitter, WeChat and so on [9]. However,

the detailed data processing is beyond the scope of this paper,
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and the W is thus assumed to be known a priori. In particular,

for i ∈ U , wi,i is set to be 1.
Based on empirical knowledge, we suppose that users under

the coverage of the same SBS will act together if the degree

of the relationships between them are high enough, which is

in accordance with the core idea of [6] and [10] that take both

physical distance and social relationships among users into

account. Specifically, for user i and user j, if both wi,j ≥ σ
and wj,i ≥ σ, then they will form a social group as shown

in Fig. 1. 0 ≤ σ ≤ 1 is a threshold controlling the tendency

of the social group formation, the value of which we assume

is determined geographically. A small σ means people, for

example, in a business street or a college, tend to act together

while a large σ indicates people, for example, in library or

residential area, are likely inclined to enjoy their personal time.

Let σi denotes the threshold of the coverage area of SBS i. We

thus formally use ψ denote a social group under the coverage

of SBS i, the definition of which is provided as follows.
Definition 1(Social group): A social group under the cover-

age of SBS i is:

ψ = {x, y|x, y ∈ U , wx,y ≥ σi, wy,x ≥ σi}. (2)

Without loss of generality, we assume that users in the same

social group ψ act together in an influence-oriented manner.

In other words, for each user x ∈ ψ, its individual behavior

patterns, i.e., (kx, p
kx
i,j , q

kx

f , dkx) will be distorted under the

influence of the internal relationships of ψ. We henceforth

regard a social group ψ as a hyper user Φ who can also be

described like an individual by a 4-tuple. On the basis of the

aforementioned assumption, the user type of such a hyper user

Φ is determined by the power of influence of all the members

in ψ. Let Ix indicates the personal influence of a member x,

which is defined as follows.
Definition 2(Personal influence): The personal influence of

a member x in ψ is:

Ix =
∑

u∈ψ,u �=x

wu,x, ∀x ∈ ψ. (3)

According to the above definition, let θx denotes the com-

prehensive influence coefficient of a member x ∈ ψ, which

reflects its comprehensive influence in ψ and is defined as

follow.
Definition 3(Comprehensive influence coefficient): For a

member x ∈ ψ, its comprehensive influence coefficient is:

θx =
Ix∑

u∈ψ Iu
, ∀x ∈ ψ, (4)

where θx ∈ [0, 1]. A large θx means the member x is of great

influence among users in ψ, and vice versa. Combing the

aforementioned definitions and assumptions, we thus derived

the model that characterizes how social networks influence

and reshape an individual’s behavior patterns in an influence-

oriented manner. The user type of a hyper user Φ is modeled

as follows:

kΦ = min
k∈K

∣∣∣∣∣∣
k −

∑
x∈ψ

θxkx

∣∣∣∣∣∣
, (5)

where
∑

x∈ψ θxkx indicates the actual user type of a hyper

user Φ, which is determined by the internal internal relation-

ships of ψ. Intuitively, a member of great influence will make

the type of such a hyper user more similar to that of its via

a large θx, and vice versa. For an unified analysis on both

individuals and hyper users,
∑

x∈ψ θxkx is approximated by

the nearest k ∈ K. Therefore, no matter whether u is an

individual or a hyper user, the tuple of its behavior patterns

can be denoted by (ku, p
ku
i,j , q

ku

f , dku) in a unified way with

dku is derived as follows:

dku =
∑
i∈ψ

dki , (6)

where dki indicates the amount of the consumed traffic of

a member i ∈ ψ in each time slot. In particular, if u is an

individual, then |ψ| = 1, which means an individual can be

considered as a special social group.

III. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

The goal of a SBS x is to maximize the expected cumulative

amount of offloading data traffic up to the finite time horizon T.

We henceforth regard an individual or a hyper user unifiedly as

a generalized user denoted by δ. In addition, let Ux,t indicates

the set of generalized users who are under the coverage of SBS

x in time slot t. Then, the problem of cache content placement

can be formally written as follows:

max
T∑

t=1

∑
f∈F

yt,f

NS∑
i=1

∑
δ∈Ui,t

pkδ
i,xq

kδ

f dkδ
, (7)

s.t. kδ ∈ K,
M < |F| ,∑

f∈F yt,f ≤ M, t = 1, . . . , T,

yt,f ∈ 0, 1, t = 1, . . . , T, f ∈ F ,

where the binary variable yt,f indicates the caching decision

whether file f is cached in time slot t. yt,f = 1 means

file f should be cached in time slot t, and vice versa. The

aforementioned problem is an integer linear programming

problem, which can be decoupled into T independent sub-

problems. Each sub-problem is a special case of the knapsack

problem [7], where the knapsack capacity is M and each item

is of unit weight. Therefore, in time slot t, ranking the files

in descending order according to their value measured on the

basis of K, P, Q, D and W, the optimal caching decisions

can be derived by choosing the M top of all F files, which is

denoted by Φ∗
t . Let vxf,t indicates the value of a file f in time

slot t if it is cached in SBS x, then its expression is:

vxf,t =

NS∑
i=1

∑
δ∈Ui,t

pkδ
i,xq

kδ

f dkδ
. (8)

The above equation indicates that if a generalize user δ who

is a heavy consumer of data traffic (i.e., with a large dkδ
) will

leave SBS i for SBS x and request file f with high probability

in time slot t (i.e., both pkδ
i,x and qkδ

f are large), then it is
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TABLE I: Simulation parameters
Parameter Value Parameter Value

NS 5 U 100
M(default) 40 F 200

K 64 T 6000

reasonable and desirable for SBS x to cache file f in time slot

t. Formally, we denote the file with the i-th file in Φ∗
t by f∗

i,t

and thus derived the following equations:

f∗
i,t =

⎧⎪⎨
⎪⎩
argmax

f∈F
vxf,t, i = 1

arg max
f∈F\(∪i−1

k=1{f∗
k})

, 1 < i ≤ M
. (9)

In time slot t, given K, P, Q, D and W, the set of files cached

in SBS x Φ∗
t = ∪M

i=1{f∗
i,t} can be derived by plugging (8)

into (9).

B. Context-Aware Caching With Social Behavior Algorithm

In practice, P, Q and D are unknown a priori and therefore

a SBS x has to learn the corresponding expected values

[7]. To address the issue, an algorithm call Context-Aware
Caching With Social Behavior (CCSB) Algorithm built on

a multi-armed bandit algorithm is provided to derived the

estimated values of P, Q and D , denoted by P̂, Q̂ and D̂
respectively, via renewing the sample means of their elements

in each time slot. The pseudocode is presented in Algorithm

1, and the general procedure of which is as follows. At

the the begin of a time slot t, the SBS x first collects all

the subscriber’s personal information with the help of the

distributedly deployed MEC servers and thus obtains each

subscriber’s user type. Furthermore, based on W that contains

the intensity of social relationships and the threshold σ of each

SBS, generalized users are obtained. Therefore, for each SBS i,
Ui,t is derived. Then, Φ∗

t is obtained through (8) and (9) on the

basis of P̂, Q̂ and D̂, the sample means of which are recently

renewed at the end of time slot t-1. In order to balance the

tradeoff between caching files about which little information

is available (exploration) and files of which it believes that

they will yield the highest values (exploitation)[7], a ε-Gready

algorithm is applied. Specifically, the SBS x has a probability

of ε to cache a file randomly from F \ Φ∗
t , otherwise cache

a file from Φ∗
t in an order of f∗

1 , f
∗
2 , . . . , f

∗
M . Finally, at the

end of time slot t, according to the observed behavior patterns

of each generalized user u, i.e., (ku, p
ku
i,j , q

ku

f , dku), renew the

corresponding sample means p̂ku
i,j , q̂ku

f and d̂ku .

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, we numerically evaluate the proposed

caching scheme by comparing its performance with other

widely known caching schemes. The simulation parameter

settings are listed in TABLE 1. In our experiments, synthet-

ic datasets are used to model the behavior patterns of an

individual or a super user. Specifically, for each user type

k ∈ K, the pki,j , q
k
f and dk are generated based on some specific

distributions respectively (e.g., uniform distribution) [11].

Algorithm 1 CCSB Algorithm

1: Input: T , {σi|i = 1, 2, . . . , NS} and W
2: Output: yt,f
3: Initialize P̂, Q̂ and D̂
4: for t=1,2,. . . T do
5: for i=1,2,. . .NS do
6: Observe generalized users based on W and σi

7: Obtain Ui,t, and ku of a generalized user u ∈ Ui,t

8: end for
9: Derive Φ∗

t on the basis of (8) and (9)

10: for f=1,2,. . . M do
11: rand ← a random number ∈ [0, 1]
12: if rand < ε then
13: Cache a file randomly from F \ Φ∗

t

14: else
15: Cache a file from Φ∗

t in an order of

f∗
1 , f

∗
2 , . . . , f

∗
M

16: end if
17: end for
18: for i=1,2,. . .NS do
19: Observe (ku, p

ku
i,j , q

ku

f , dku) of a generalized user

u ∈ Ui,t

20: end for
21: Renew the sample means of pku

i,j , qku

f and dku

22: end for
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Fig. 2: Cumulative offloaded backhaul data traffic as a function

of time slots

Comparisons among the proposed caching scheme and

other caching schemes are plotted in Fig. 2 to evaluate the

performance of CCSB, with the storage capability coefficient

θ set to be 0.2. The black curve labeled by Oracle indicates

the performance of CCSB when the P, Q and D are known

a priori, which is also the upper bound of the performance

of CCSB. Therein, the performance of the random caching

scheme is the worst as it just simply fills the storage of a SBS.

M-most popular caching (MPC) [3] that only focuses on file

popularity achieves a higher cumulative offloaded hackhaul
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capability coefficient

data traffic than that of random caching, while popularity

and mobility aware caching (PMAC) [7] is better due to the

additional integration of the contextual information of user

mobility. Compared with these caching schemes, the proposed

CCSB not only exploits various contextual information but

also takes the influence of social networks into account, and

thus achieves an obvious performance improvement. Besides,

such an advantage is much more remarkable over time.

In order to quantify the performance differences among

the aforementioned caching schemes, a relative performance

measure called the backhaul data traffic offloading ratio [10]

is utilized, which is defined as the ratio of the amount of

the offloaded backhaul data traffic compared to the overall

backhaul data traffic. As shown in Fig. 3, our proposed

CCSB outperforms the PMAC [7] in terms of backhaul data

offloading ratio by more than 30%.

In Fig. 4, performance comparisons are conducted under

different storage capabilities reflected by θ which is defined

as the ratio of the number of files a SBS can cache compared

to the total number of files. Although all the performances

of these caching schemes show an upward trend and finally

tend to 100% with the increase of θ, their the storage utiliza-

tion efficiencies are different. Intuitively, the proposed CCSB

exploits storage in a higher efficiency comparing with other

caching schemes, especially when storage resources are poor.

For instance, when θ = 0.2, CCSB can make more than 40%

backhaul data traffic offloaded while the best one of the other

three, i.e., PMAC, can only achieve around 30%.

V. CONCLUSION

In this paper, we propose a context aware caching scheme

with social behavior for MEC-enabled SCNs, aiming to max-

imize the offloaded backhaul data. Various user contextu-

al information such as mobility pattern, preference towards

files and the amount of consumed traffic in each time slot

are integrated. Furthermore, the impact of social networks

is considered, with a novel model characterizing how an

individual’ behavior patterns are distorted by social relation-

ships. Based on a multi-armed bandit algorithm, a generalized

user’s behavior patterns are learnt under the impact of social

networks. By comparing with other widely known caching

schemes, the superiority of the proposed caching scheme is

demonstrated in terms of cumulative offloaded backhaul data,

traffic offloading ratio and storage utilization efficiency.
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