
Using Attribute-Based Encryption on IoT Devices
with instant Key Revocation

Marten Fischer, Alfred Scheerhorn, Ralf Tönjes
University of Applied Sciences Osnabrück

Germany
E-mail: {m.fischer,a.scheerhorn,r.toenjes}@hs-osnabrueck.de

Abstract—The Internet of Things (IoT) relies on sensor devices
to measure real-world phenomena in order to provide IoT
services. The sensor readings are shared with multiple entities,
such as IoT services, other IoT devices or other third parties. The
collected data may be sensitive and include personal information.
To protect the privacy of the users, the data needs to be protected
through an encryption algorithm. For sharing cryptographic
cipher-texts with a group of users Attribute-Based Encryption
(ABE) is well suited, as it does not require to create group keys.
However, the creation of ABE cipher-texts is slow when executed
on resource constraint devices, such as IoT sensors. In this paper,
we present a modification of an ABE scheme, which not only
allows to encrypt data efficiently using ABE but also reduces the
size of the cipher-text, that must be transmitted by the sensor.
We also show how our modification can be used to realise an
instantaneous key revocation mechanism.

I. INTRODUCTION

The Internet of Things (IoT) has great potential to bridge
the gap between the virtual world and the real world. In
IoT, sensors are deployed in the real-world to measure real-
world physical phenomena. This information can then be
processed by services or applications to help users to make
better decisions or to influence the real world directly via
actuators. In general, IoT sensors are small, resource constraint
devices, with low memory and low computational power.
Furthermore, it is most likely, that many of these IoT sensors
are battery powered, meaning long-running operations should
be avoided to extend the life-span or to reduce maintenance
intervals respectively. The provider of an IoT sensor network
might want to protect the data gathered by the sensors due to
privacy reasons or as a part of his business model. For this,
he/she will utilise cryptographic methods. In order to avoid
the need for re-encrypting the data for each data user, a public
key cryptographic scheme, such as RSA [9], combined with
a group key can be used. Recently, a cryptographic scheme
more suited to share secret cipher-texts with a group of users
has emerged, namely Attribute-Based Encryption (ABE). In
ABE a public key is a set of attributes describing the intended
receiver. A user possessing a (sub-)set of these attributes is
able to decrypt the cipher-texts. This means, an ABE cipher-
text is not encrypted for a specific user or a user’s private
key, but to publicly available attributes. To ensure a user
possesses a certain attribute a new entity called Attribute
Authority (AA) is introduced. Data users authenticate at the
AA and request a private key corresponding to an attribute-

set, with which decryption is possible. However, the creation
of an ABE cipher-text is a complex task, not well suited for
resource constraint IoT devices. The complexity is directly
proportional to the number of attributes used during encryp-
tion. In this paper, we present a modification to an existing
ABE scheme, which reduces the computational effort on the
IoT device significantly. At the same time, the size of the
cipher-text is reduced as well, requiring less communication
efforts to transfer encrypted sensor readings from the sensor
to a network/cloud storage. Both measures enable the usage
of ABE group encryption on IoT sensors.

A major problem in ABE is the key revocation. Unlike
in other public key cryptographic schemes, attributes may be
shared among multiple users, meaning the revocation of one
attribute may effect multiple users. Since an encrypter uses
only publicly available attributes for encryption, he/she cannot
be aware of any revocations that may have occurred. We
show that our modification can be used to employ an efficient
revocation mechanism. The mechanism can be configured by
implementing simple rules into the encryption process.

The remainder of this paper is structured as follows: Section
II presents related work for key revocation techniques in ABE
and ABE based solutions for the IoT. Section III summarises
the workflow and algorithms of an ABE scheme (CP-ABE),
which is the basis for our modification. Our modification to
the CP-ABE scheme is presented in IV. Section V compares
the performance of the original ABE scheme and our mod-
ification. Section VI describes how our modification can be
used to realise a key revocation mechanism. Finally, section
VII concludes the paper.

II. RELATED WORK

A. Key Revocation in ABE

Key revocation is a challenging task in ABE (and Identity-
Based Encryption for that matter). Because in ABE cipher-
texts are created for a group of users, revocation attempts
might affect multiple users.

[10] proposed to attach an expiration date to each attribute
to realise a key revocation mechanism. An attribute student
would become for example student2018. A student with such
attribute must update his private key periodically. The method
has the disadvantage, that the revocation would take possibly a
long time. Even extending it to studentOct2018, the revocation
time can be up to 1 month long. Bethencourt et al. [3] showed

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 126

how to construct an access tree to realise numerical compar-
ison. They use the numerical comparison also to realise a
sort of key revocation functionality by assigning an expiration
value to each attribute.

A more instantaneous approach proposed by [7] utilises
proxy-re-encryption. Proxy-re-encryption is a technique, that
allows modifying a cipher-text, without learning something
about the corresponding plain-text. Here, a central storage
system (e.g. cloud storage) provides a directory service with
all cipher-texts. Upon a revocation event, this central system
generates new private key components for all non-revoked
users and distributes them. Afterwards all cipher-texts are
re-encrypted using the proxy-re-encryption technique. In this
approach, the revocation time is drastically reduced. However,
a lot of computational effort is required to re-encrypt all
cipher-texts, especially when the system is running for a long
time.

The authors of [13] also use proxy-re-encryption to realise
a revocation mechanism. Here, a synthetical attribute called
delegation attribute is used. As before, a central storage system
provides a directory service with all cipher-texts. When a
user requests a cipher-text, the central system embeds the
delegation attribute into the cipher-text in such a way, that
only non-revoked users can decrypt the cipher-text. A cipher-
text is returned in both cases, either a valid one or a cipher-
text, which cannot be decrypted by any user in the system. It
remains unclear why the authors decided to design the system
this way, instead of simply replying with an error message.
In this scheme, a data user must authenticate at two entities,
the AA to get the private user key and at the central storage
system, to get the cipher-text. In turn, a user database needs
to be synchronized between both entities.

None of the schemes addresses the problem of computa-
tional costs for resource constraint devices.

B. ABE for Resource Constraint Devices

The algorithms involved in ABE are not well suited to be
performed on resource constraint devices. Ambrosin et al. did
a performance analysis using a Samsung Galaxy smart-phone
with 1.2 GHz CPU and 1GB RAM [2]. Their results showed,
that to encrypt a cipher-text with 30 attributes requires up to
30 seconds, depending on the security level. Considering IoT
devices, the performance figures of a smart-phone seem high
and much more time would be required to encrypt a message.

In [6], Green et al. try to reduce the required performance
in order to decrypt an ABE cipher-text. Their goal was to
enable smart-phones to access and decrypt ABE cipher-texts
efficiently and in a timely manner. Their approach was to use
a near-edge proxy, which does the ”heavy” work involved in
the decryption process. The proxy performs a transformation
from hard to process ABE cipher-text into an easier cipher-
text. The smart-phone performs the final decryption to recover
the plain-text. Of course, the proxy is at no time able to access
the plain-text.

The authors of [8] tried to speed up the encryption process
by pre-computing and storing tuples. These tuples are later

used to define a number of polynomials with some specific
properties. The obvious drawback in this approach is the
additional memory requirement. The number of tuples created
during the pre-computation process is directly proportional to
the number of attributes in a defined access policy. Modifica-
tions on the access policy require to re-run the pre-computation
process. Another drawback is the size of the cipher-text, which
increases with the number of attributes.

Touati et al. [12] propose to distribute calculations (mainly
exponentiations) of the ABE encryption algorithm to neigh-
bouring IoT nodes. However, their approach requires, that each
IoT node shares pairwise keys with at least two unconstraint
trusted nodes in the neighbourhood. Our approach presented
in this paper follows the similar goal: distributing the expo-
nentiation calculations to an unconstraint entity.

In contrast to the scheme by Touati, our approach requires
only one unconstraint entity and no pairwise keys need to be
exchanged beforehand. The size of the cipher-text transferred
from the IoT device to the entity is reduced significantly. In ad-
dition, none of the approaches to enable ABE for IoT devices
has dealt with the problem of key revocation. Our approach
supports a configurable key revocation mechanism, which can
deny access to an encrypted message instantaneously.

III. ATTRIBUTE-BASED ENCRYPTION

In 1984, Shamir introduced a novel type of cryptographic
scheme that enabled users to communicate securely without
the need of exchanging private or public keys and without
requiring the services of a Public-Key-Infrastructure (PKI)
[11]. In his approach, instead of generating a random pair
of private and public keys, the user chooses the identification
(e.g. email address) of his communication partner as the public
key. A Private Key Generator (PKG), holding a secret master
key, computes the corresponding private key once and issues
it to the user. Anyone who wants to send a cipher-text to a
user can use the recipient’s identification as the public key for
encryption. The receiver uses the private key generated by the
PKG to decrypt the cipher-text. The concept is depicted in
Figure 1. Because the scheme uses the user’s identity as the
public key, it was named Identity-Based Encryption (IBE). The
first fully-functional IBE scheme was developed by Boneh and
Franklin 17 years later [4].

IBE was extended to Fuzzy Identity-Based Encryption
(Fuzzy-IBE) by Sahai and Waters [10]. They envisioned to use
biometric identities in an IBE scheme, to encrypt data based
on a user’s biometric properties, e.g. an iris scan. Because
biometric measurements are noisy, the scheme must provide
some degree of error-tolerance, to allow fuzzy attribute-sets,
hence the name Fuzzy Identity-Based Encryption.

A second application was named Attribute-Based Encryp-
tion (ABE). Here, the encrypter chooses a set of attributes
in order to encrypt a message. Any user that has as identity
a required number of these attributes is able to decrypt the
cipher-text.

Later, two important derivates were developed. Both use
an access tree (as defined in P-1) to describe an access

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

127

Sender Receiver

Private Key
Generator

(PKG)

Send IBE Cipher-text

Requests Private Key
for his identity

Requests Public System
Parameters

Encrypts message
using Receiver‘s

identity

Decrypts message
using

Private Key

 Provides Public Parameters
 Validates user identities
 Generates private user keys

Attribute Authority (AA)

Fig. 1. Participants in an Identity-Based Encryption scheme

policy utilising attributes. The first derivate is called Key-
Policy Attribute-Based Encryption (KP-ABE), where the ac-
cess policy is associated with the private user key and the
cipher-text is associated with an attribute-set [5]. In the second
derivate, named Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), the situation is reversed. Here the private user
key is associated with an attribute-set and the cipher-text is
associated with the access policy. Our modification is based
on the CP-ABE scheme. For this reason subsection III-B will
describe CP-ABE in more detail. Before that, we state some
preliminaries used in this and the following section.

A. Preliminaries

P-1 Access Tree: Let T be an access tree, where each leaf
node represents an attribute and each non-leaf node
represents a threshold gate. Let numn be the number
of child nodes for node n and kn be the threshold value
with 0 ≤ kn ≤ numn. We define the function IT (n) to
return a unique identifier (an ordering of the children of
node n) and PT (n) to return the parent node of node n in
T . We denote a set of attributes ω that satisfies an access
tree T with T (ω) = 1. The attribute of a leaf node n is
denoted with an.

P-2 Bilinear Map: Let G1 and G2 be groups of prime order p
and let g be a generator of G1. We say G1 has a bilinear
map e : G1 ×G1 → G2, if the following two conditions
hold: (i) The mapping is bilinear, i.e. for all a, b we have
e(ga, gb) = e(g, g)ab and (ii) e(g, g) 6= 1.

P-3 Random Oracle: A random oracle is a function, which
maps each input to a uniformly chosen random output
from its output domain. The output of a request has
exactly one input, i.e. the function is injective.

P-4 The Lagrange Coefficient: 4i, S(x) for i ∈ Zp and a set
S of elements in Zp is defined as

∏
j∈S,i 6=j

x−j
i−j .

B. Ciphertext-Policy Attribute-Based Encryption

The CP-ABE scheme was introduced by Bethencourt et
al. in [3]. Here, the cipher-text embeds the access policy
in form of an access tree T to describe which private keys
can decrypt it. This means, that the data owner is capable to

specify the access policies at the cipher-texts to state which
data users will be able to decrypt them. Therefore the CP-ABE
uses a more intuitive method compared to KP-ABE, as it
is similar to a traditional access control model and allows a
more versatile sharing of data among groups. The data user’s
private key is labelled with a set of descriptive attributes ω′.
The CP-ABE scheme is composed of five algorithms: Setup,
KeyGen, Encrypt, Decrypt and an optional Delegate, which are
presented in the following. The scheme uses a bilinear map
G1 as defined in P-2 and an access tree T as defined in P-1.

1) (PK,MK) ← Setup(): The Setup algorithm executed
by the AA has no input and outputs the system’s public
key PK and the system’s master key MK. The master
key MK is kept secret by the AA and the public key is
published to all users in the system.

2) D ← KeyGen(MK,ω′): The KeyGen algorithm gener-
ates a private user key D. The algorithm takes as input
the secret master key MK and the set of attributes ω′,
which describes the user. The private key components
are randomised so that no two users can collude by
combining their components.

3) E ← Encrypt(PK, T ,M): The Encrypt algorithm en-
crypts a message M ∈ G1 using access policy T . In
addition, the algorithm takes as input the public key PK
and returns cipher-text E.

4) M ← Decrypt(D,E): The Decrypt algorithm uses the
private key D and the cipher-text E to recover message
M . This algorithm is only successful, if the attribute-set
ω′, used to create the private key D, satisfies the access
policy T used in the Encrypt algorithm.

5) D̃ ← Delegate(D, ω̃): The Delegate algorithm allows a
data user, that has already obtained a private key D for his
attribute-set ω′ from the AA, to create a new private key
D̃, which is labelled with a subset of attributes ω̃ ⊆ ω′.
This algorithm is optional and not further considered in
this paper.

IV. CIPHERTEXT-POLICY ATTRIBUTE-BASED
ENCRYPTION FOR RESOURCE CONSTRAINT IOT DEVICES

In this section, we show our modification to reduce the
computational costs for the creation of CP-ABE cipher-texts
on resource constraint IoT devices. In this modification, only
a partial CP-ABE cipher-text is created on the resource
constraint device itself (during the Encrypt algorithm) and
completed later on an unconstraint entity called proxy in the
Convert algorithm. In the following we describe the algorithms
for our modification in detail:

1) (PK,MK) ← Setup(): The Setup algorithm chooses
a bilinear group G1 of prime order p with generator g
and three random exponents α, β, γ ∈ Zp. The system’s
public parameters are PK = (G1, g, h = gβ , b =
gγ , e(g, g)α) and the secret master key is MK =
(α, β, γ).

2) D ← KeyGen(MK,ω′): The KeyGen algorithm gener-
ates a private key for a user identified with the attribute-
set ω′. For this, the algorithm generates the random

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

128

numbers r and ri ∈ Zp∀i ∈ ω′. The private key D is gen-
erated as D = (D′ = gr/β , Di = {gr ·H(i)ri}i∈ω′ , D′i =
{gri}i∈ω′). (H is a function modeled as random oracle
as defined in P-3.) This algorithm is executed by the AA.

3) E ← Encrypt(PK, T ,M): With this algorithm, the
IoT device generates the cipher-text E by encrypting a
message M ∈ G1 using the access tree T . The algorithm
chooses two random numbers s, v ∈ Z∗p and creates the
cipher-text as follows: E = (T , E′ = Me(g, g)αs, Q =
s/v, C = hQ = hs/v, V = bv). E is then sent to the
proxy.

4) Ê ← Convert(E): This algorithm is executed by the
proxy and generates a polynomial qn with degree dn for
each node n ∈ T with ∀dn : dn = kn − 1, where kn
is the threshold value of node n. For the polynomial of
the root node n0, the algorithm sets q0(0) to Q = s/v
and d0 other points at random to define it completely.
For all other polynomials qn the algorithm sets qn(0) =
qPT (n)(IT (n)) and chooses dn other points at random to
define qn completely. With these polynomials the cipher-
text can be completed as Ê = (T , E′, C, V, {En =
gqn(0)}n∈L, E′n = {H(an)

qn(0)}n∈L).
5) D̂ ← Grant(MK,V,D′): This algorithm is performed

by the AA in order to grant a data user access to a cipher-
text. The algorithm takes as input the secret master key
MK, V from cipher-text Ê, and D′ from the users private
key. First it computes V̂ = V 1/γ = gvγ/γ = gv . Using
V̂ and the secret master key the algorithm can compute
D̂ = V̂ α/β · D′ = gvα/βgr/β = gvα/β+r/β . D̂ is then
returned back to the data user. In section VI we explain
how to implement a key revocation mechanism into this
algorithm.

6) M ← Decrypt(Ê,D, D̂): This algorithm decrypts the
cipher-text Ê, associated with an access structure T ,
using the private key D to recover the message M . The
algorithm uses the function DecryptNode to process the
access structure. The function takes as input the cipher-
text E, the private key D and a node n. If n is a leaf
node and i is an attribute contained in ω′ | i = an the
function works as follows:

DecryptNode(Ê,D, n) =
e(Di, En)

e(D′i, E
′
n)

=
e(gr ·H(i)ri , hqn(0))

e(gri , H(i)qn(0))

= e(g, g)rqn(0)

Otherwise, it returns NULL. If n is not a leaf node the al-
gorithm proceeds as follows: For all nodes C that are chil-
dren of n it calls the function DecryptNode(Ê,D, c ∈
C) and stores its values in Vc. If there is a subset S ⊆ C
with |S| = kn and ∀c ∈ S : Vc 6= NULL, then it

computes

Vn =
∏
c∈S

e(g, g)r·qPT (c)(IT (c))

=
∏
c∈S

e(g, g)r·qc(0)

= e(g, g)r·qn(0) (using the Lagrange coefficient, P-4)

and returns the result. If the algorithm calls the func-
tion recursively on the root node n0, it gets V0 =
e(g, g)r·q0(0) = e(g, g)rs/v , since q0(0) is set to Q = s/v
in the Encrypt algorithm. Now the algorithm can recover
the message

M =
E′

(e(C, D̂)/V0)

=
Me(g, g)αs

(e(h
Q,g(vα/β+r/β))
e(g,g)rs/v

)

=
Me(g, g)αs

(e(g
βs/v,g(vα/β+r/β))
e(g,g)rs/v

)

=
Me(g, g)αs

(e(g,g)
βs/v·(vα/β+r/β)

e(g,g)rs/v
)

=
Me(g, g)αs

(e(g,g)
αs+rs/v

e(g,g)rs/v
)

=
Me(g, g)αs

e(g, g)αs

=M .

The only algorithm executed by the IoT device is the
Encrypt algorithm. The number of exponentiation is reduced to
3 instead of 2+2n (with n being the number of attributes used
in the access policy) in the original CP-ABE. The size of the
cipher-text is reduced by the same degree, 3 group elements
instead of 2 + 2n in the original CP-ABE. The calculation
of the cipher-text components En and E′n is shifted to the
proxy executing the Convert algorithm. The proxy needs to
be a trusted entity using the provided access policy T when
generating the cipher-text components En and E′n. The proxy
is never able to decrypt the cipher-text E′ to recover message
M . Each time a new value for v is chosen in the Encrypt
algorithm, a new D̂ is required, to decrypt a cipher-text. In
order to get D̂, the data user sends V and D′ to the AA, which
executes the Grant algorithm. Since the private key component
D̂ includes the random number r, which is individual for each
user in the system, no two users can collude. That means a
non-revoked user cannot share his D̂ (the output of the Grant
algorithm) with a revoked user. For scalability reasons, the
Grant algorithm can be distributed over Sub-AAs by providing
them with the secret master key, i.e. α/β and γ. Figure 2

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

129

summarises the message flow between the involved parties
(without the Setup algorithm and without public or master
keys).

IoT
Device

Proxy
Network
Storage

Data
User

AA

KeyGen(ω')

D
Encrypt(T, M)

Convert(E)

request cipher-text

Grant(V, D')

Decrypt(, D,)

𝐷

𝐸

𝐸

𝐸 𝐷

Fig. 2. Messageflow

Further improvement can be achieved, if the AA keeps a
repository of the private key component D′ for each user. In
the subsequent Grant algorithm, a data user only needs to
send V from cipher-text Ê to the AA. After authentication,
the AA can lookup the D′ required to compute D̂. That way,
an unnecessary transfer of D′ (as part of the private key D)
between data user and AA can be avoided.

V. PERFORMANCE EVALUATION

In this section, we compare the performance of the CP-ABE
scheme, as introduced in [3] (”BSW07”), and the modifi-
cation introduced in this paper (”IoT-ABE”). Both schemes
were implemented in the programming language Python. The
measurements of the CP-ABE scheme were done using the
implementation provided in the Charm crypto framework [1].
The measurements focus on the algorithms required to create
a CP-ABE cipher-text, namely the Encrypt (both schemes)
and the Convert (this scheme) algorithms. The performance
measurements were done on a Raspberry Pi 3 Model B v1.2,
except for the Convert algorithm, which was executed on a
laptop (2.6 GHz Intel Core i5). In this demonstration scenario,
the Raspberry Pi represents the resource constraint IoT device
and the laptop represents the proxy. The measurements were
done in 10 runs with an increasing number of attributes in the
access policy, ranging from 2 to 20. Each run was repeated
100 times. Figure 3 shows the mean execution time of all 100
repetitions.

The blue bars in figure 3 depict the execution time of the
original CP-ABE Encrypt algorithm and show a linear growth
with an increasing number of attributes, up to 1 second at
20 attributes. The green bars depict the execution time of the
modified Encrypt algorithm executed on the Raspberry Pi. As
expected, the execution time stays constant at about 0.022
seconds. The Convert algorithm is executed on the laptop
and the execution time increases with the growing number of
attributes as well. This can be seen at the orange bars in the
figure. Since parts of the process to create an ABE cipher-text
could be outsourced from the IoT device to a more powerful

2 4 6 8 10 12 14 16 18 20

number of attributes

0.0

0.2

0.4

0.6

0.8

1.0

tim
e

in
 se

co
nd

s

Execution times
BSW07
IoT ABE-convert
IoT ABE-encrypt

Fig. 3. Execution times of algorithms to create an ABE cipher-text in CP-ABE
and IoT-ABE

machine, the sum of the execution time of the Encrypt and
Convert algorithm of the IoT-ABE is lower, than the execution
time of the original Encrypt algorithm.

The size of the created cipher-texts shows a similar be-
haviour as the execution time. In both implementations, the
cipher-text size grows linear with the size of the access
policy (number of attributes respectively). However, the size
of the cipher-text grows in the modified Encrypt algorithm as
well, from 469 Bytes with 2 attributes to 631 Bytes with 20
attributes. That is, because the output of the Encrypt algorithm
already contains the access policy T . As Fig. 4 shows, the
cipher-text after the Convert algorithm is slightly bigger, than
in the original CP-ABE scheme. This can be explained with the
additional V embedded in the cipher-text. Because we assume
the proxy has a high-bandwidth connection with the network
storage, we do not think this poses a problem.

2 4 6 8 10 12 14 16 18 20

number of attributes

0

1000

2000

3000

4000

5000

cip
he

r-t
ex

t s
ize

 in
 b

yt
e

Cipher-text size
BSW07
IoT ABE-convert
IoT ABE-encrypt

Fig. 4. Size of cipher-text in CP-ABE and IoT-ABE

VI. KEY REVOCATION

There exists a conceptual problem with key revocation in
ABE schemes. That is, there simply is no public key linked to

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

130

a specific user, that can be revoked. In ABE the ”public key” is
a set of attributes (or an access policy) describing one or many
users in the system. In this paper, we define key revocation as
the exclusion of one specific user from the system. A revoked
user is not able to decrypt cipher-texts with his private key. We
call the time between a user gets revoked and the revocation
takes effect ”revocation time”. The key revocation mechanism
in our modification works similar to the method employed by
[13]. There, the attempt to download or decrypt a cipher-text
resulted in a validation, to check if the user has been revoked.
In our approach, a user, who wants to decrypt a cipher-text,
needs to request additional information, namely the D̂, from
the AA. Upon this request, the AA can verify, if the user is
revoked or not. In case the user is revoked, the AA replies
with an error message.

By defining rules for the selection of v in the Encrypt
algorithm, an operator of a sensor network with resource con-
straint IoT devices can configure the revocation mechanism.
A newly chosen v in the Encrypt algorithm means, that a
data users needs to obtain a new D̂ by invoking the Grant
algorithm at the AA. For example, he/she could define that
a new random v has to be chosen only once a day, or v has
to be renewed after it has been used a number of times. This
increases the revocation time but reduces the communication
and computation overhead to get D̂. The sensor network
provider can balance the trade-off between security (revocation
time) and system performance.

VII. CONCLUSION

This paper presented a new approach to utilise ABE on
resource constraint IoT devices. In this approach, most of
the computations required to generate an ABE cipher-text
are shifted to a new entity, a proxy. We showed, that the
computational cost to create a cipher-text is constant with
respect to the number of attributes used within the access
policy and very low on the resource constraint IoT device
compared to the original CP-ABE scheme. At the same time,
the size of the cipher-text transmitted by the IoT device could
be reduced. The proxy runs a Convert algorithm in order to
convert a partial ABE cipher-text from an IoT device into
a complete CP-ABE cipher-text. The proxy is never able
to decrypt the cipher-text. Furthermore, our approach allows
realising an instantaneous key revocation mechanism.

In future research, we will investigate a method to ensure the
proxy uses the correct access policy in the Convert algorithm.
At the moment, there is no way to ensure the proxy uses the
access policy T provided as input through Ê.

ACKNOWLEDGMENT

This work is part of the research project AgraSEC
founded by the ”Europäischen Fonds für regionale Entwick-
lung (EFRE)” (project number 85003218).

REFERENCES

[1] Joseph A. Akinyele, Christina Garman, Ian Miers,
Matthew W. Pagano, Michael Rushanan, Matthew Green,

and Aviel D. Rubin. Charm: a framework for rapidly
prototyping cryptosystems. Journal of Cryptographic
Engineering, 3(2):111–128, 2013.

[2] Moreno Ambrosin, Mauro Conti, and Tooska Dargahi.
On the feasibility of attribute-based encryption on smart-
phone devices. In Proceedings of the 2015 Workshop on
IoT challenges in Mobile and Industrial Systems, pages
49–54. ACM, 2015.

[3] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-policy attribute-based encryption. In 2007
IEEE symposium on security and privacy (SP’07), pages
321–334. IEEE, 2007.

[4] Dan Boneh and Matt Franklin. Identity-based encryption
from the weil pairing. In Annual International Cryptol-
ogy Conference, pages 213–229. Springer, 2001.

[5] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent
Waters. Attribute-based encryption for fine-grained ac-
cess control of encrypted data. In Proceedings of the
13th ACM conference on Computer and communications
security, pages 89–98. Acm, 2006.

[6] Matthew Green, Susan Hohenberger, and Brent Wa-
ters. Outsourcing the decryption of abe ciphertexts. In
USENIX Security Symposium, volume 2011, 2011.

[7] Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier:
Encryption-based access control in social networks with
efficient revocation. In Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications
Security, pages 411–415. ACM, 2011.

[8] Nouha Oualha and Kim Thuat Nguyen. Lightweight
attribute-based encryption for the internet of things. In
Computer Communication and Networks (ICCCN), 2016
25th International Conference on, pages 1–6. IEEE,
2016.

[9] Ronald L Rivest, Adi Shamir, and Leonard Adleman.
A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[10] Amit Sahai and Brent Waters. Fuzzy identity-based
encryption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 457–473. Springer, 2005.

[11] Adi Shamir. Identity-based cryptosystems and signature
schemes. In Workshop on the Theory and Application of
Cryptographic Techniques, pages 47–53. Springer, 1984.

[12] Lyes Touati, Yacine Challal, and Abdelmadjid Bouabdal-
lah. C-cp-abe: Cooperative ciphertext policy attribute-
based encryption for the internet of things. In Ad-
vanced Networking Distributed Systems and Applications
(INDS), 2014 International Conference on, pages 64–69.
IEEE, 2014.

[13] Zhiqian Xu and Keith M Martin. Dynamic user revo-
cation and key refreshing for attribute-based encryption
in cloud storage. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2012 IEEE
11th International Conference on, pages 844–849. IEEE,
2012.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

131

