
ComPOS: Composing Oblivious Services
Alfred Åkesson, Görel Hedin, Mattias Nordahl, Boris Magnusson

Lund University, Sweden
{alfred.akesson,gorel.hedin,mattias.nordahl,boris.magnusson}@cs.lth.se

Abstract—Future internet-of-things systems need to be able to
combine heterogeneous services and support weak connectivity.
In this paper, we introduce ComPOS, a new domain-specific
language for composing services in IoT systems. We show how
Maria, a bird watcher, can use ComPOS to build a system that
allows her to spy on birds in the garden while she is not at home.
We demonstrate how ComPOS handles the unpredictable nature
of IoT system by analysing in what cases Maria’s system is still
useful when some devices are unavailable.

Index Terms—DSL, IoT, service composition, end-user pro-
gramming

I. INTRODUCTION

Current IoT applications typically have a cloud-centric
architecture, where sensor devices stream data to cloud servers,
computation and storage takes place in the cloud, and user ap-
plications interact with the data in the cloud. This architecture
leads to IoT platform silos, that work in isolation. However,
this makes it difficult to compose existing data, services, and
devices from different silos into new applications [1], [2], [3].
Also, future IoT applications are expected to contain more
powerful devices, with more computation taking place at the
edge of the network, and need to handle unreliable (weak)
connectivity of heterogeneous networks in a robust way [4].

We are exploring how to program such new kind of systems.
Our goals are to support flexible integration of heterogeneous
services to avoid the current silos, and to support the program-
ming of robust applications that continue to work partially
even if connectivity is temporarily lost.

Our approach is based on the Palcom IoT architecture [5],
[6], [7] which uses asynchronous message passing between
services hosted on devices. There are two main kinds of
services: native services that contain computations and in-
teraction with the physical world, and composition services
that compose native services into applications, mediating and
adapting messages between them. Native services are oblivi-
ous, meaning that they don’t set up any connections to other
services, and they don’t necessarily know the identity of the
service and device at the other end of a connection. This makes
them reusable in different applications. Compositions, on the
other hand, define which oblivious services on which devices
that should be composed, and how messages are mediated and
adapted.

Metaphorically, we can think of native services as ports on
physical devices, and compositions as multiway adaptor cables
that connect these ports. Additionally, a composition may itself
have oblivious services, so called synthesized services, that
other compositions can connect to. This would correspond to

there being a port on the adaptor cable that another cable can
plug into.

Metaphors from the physical world often need to be en-
hanced with some degree of “magic” to better fit a computa-
tional system [8]. In our case, the multiway cable (composi-
tion) has the ability to automatically connect itself to devices,
as soon as they are within reach and turned on. To have this
capability, the composition is itself hosted on a device, and
“within reach" means that the two devices can reach each
other via some network. Furthermore, each “cable end" of
a composition can adapt to fit in the “port" of the oblivious
service, so they do not depend on specific standardized service
interfaces. Additionally, it is possible for several different
“cables" to connect to the same “port" at the same time.

Figure 1 shows a conceptual model for devices and services:
services are hosted on devices. Services can be either oblivious
or compositions, where a composition connects to zero or more
oblivious services. An oblivious service can be either native
or synthesized, the latter being part of a composition. Each
oblivious service has an interface of incoming and outgoing
messages.

hosted on

connects to*

has

*

Device Service

CompositionOblivious
{msg interface}

Native Synthesized

Fig. 1. Conceptual model for Palcom devices and services.

This paper presents a domain-specific language (DSL) for
programming compositions. The language, ComPOS (Com-
position language for Palcom Oblivious Services), generalizes
the currently used Palcom composition language [5], that was
too simple for many interesting applications. In particular,
ComPOS supports nested and parallel message sequences,
and request messages that may have alternative replies. To
support these constructs, ComPOS introduces activations that
add state to the compositions. A main design goal is to make
the language very easy to use, as well as to allow analysis with
respect to composition. For this reason, ComPOS includes
only constructs related to messages and message sequencing,
and all computations on data are delegated to native services.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 132

In the following sections, we first present a motivating ex-
ample for composing services (Section II). We then introduce
our DSL, explaining the features and the interpreter (Section
III). To exemplify more features of the DSL we do a couple of
extensions to the example (Section IV). We then introduce a
utility analysis in order to analyze what happens in the system
when devices come and go. We use this analysis to analyze
the extended example (Section V). Finally, we discuss related
work (Section VI), and end with conclusions and prospectives
for future research (Section VII).

II. MOTIVATING EXAMPLE

As a motivating example, we will use a variant of a
bird watching scenario [9], and discuss how to construct a
supporting application using ComPOS.

A. Bird watching scenario

Maria is interested in birds and likes to keep track of what
birds visit her garden. However, she cannot constantly be on
the watch, so she would like to have an automatic system that
does it for her. She has an idea of building a system that will
automatically take pictures of the birds during the day, which
she can check when she gets home. She has hardware and
software that she wants to use to build the system: a motion
sensor, a camera, and some artificial intelligence software that
can recognize if a bird is present in an image or not. She would
like to design the system such that it takes a photo every time
the motion sensor detects that something is moving in the
garden. If the bird recognition software detects a bird in the
photo, it should get saved for later inspection.

B. Devices and services used

Figure 2 shows the hardware and software that Maria
uses to implement the automatic bird watcher application.
The camera, the motion sensor, and the laptop are devices
connected to the local wifi network and they can discover
each other using the Palcom middleware.1

The functionality is packaged as Palcom native services,
each exposing an interface, specifying the messages that the
service can send and receive. A message can be a command
(not expecting a response), a request, or a response to a pre-
vious request. For a given request, like has_bird, there can be
several alternative responses, like bird and not_bird. Messages
can have parameters to transfer data between services. For
example, the has_bird request has a parameter img for the
image to be analyzed.

The services in Maria’s system are:
• A storage service, to which images can be sent.
• A bird service that can classify an image as containing a

bird or not.
• A motion service that sends a move command each time

a movement is detected

1The Palcom middleware allows automatic discovery of devices and ser-
vices on application-defined networks consisting of local UDP networks,
connected using UDP or TCP/IP.

Camera
Service

Motion
Service

Bird
Service

Storage
Service

Camera

Motion
Sensor

Laptop

store(img)

move()

take_photo()
photo(img)

has_bird(img)

not_bird()
bird()

Fig. 2. Services (solid boxes) running on devices (dashed boxes). Commands
and requests (solid arrows), responses (dashed arrows).

• A camera service that can take a photo on request and
return the image.

Commands and requests are said to be spontaneous mes-
sages. When a spontaneous message is received, it starts a new
independent reaction in the receiving service. I.e., spontaneous
messages are not considered to have any causal relationship to
previously received messages. Responses, on the other hand,
are expected, and will continue a reaction that was initially
started by a spontaneous message.

C. Composing the application

To construct the bird watcher application from the above
services, Maria creates a composition (a ComPOS program),
that connects to the relevant services, and that includes a script
for how messages should be mediated. Figure 3 shows the
composition script and a corresponding sequence diagram:
When a move message arrives from the motion sensor, a
take_photo request is sent to the camera, which responds
with a photo message. A request has_bird is then sent to
the bird recognition service which responds with either a bird
or a not_bird reply. In the case of a bird reply, a command
store is sent to the storage service. In addition to the script,
the composition contains a configuration part that lists what
services are used, what devices they run on, and what local
names are used for these services (not included in figure 3).
Both the configuration part and the script can be created in
an easy way using structure editing and drag-and-drop from a
service discovery browser [7], [10].

Maria deploys the composition service to the Laptop device
and starts it. The system now store images of the birds during
the day and she can come home after work and enjoy a new
set of bird photos.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

133

Motion Camera Bird Storage Composition

move()

take_photo()

photo(img)

has_bird(img)

bird()

store(img)

not_bird()

AltAlt

1

2
3

4

5

activation
spontaneous

expected

Fig. 3. Bird watcher composition script (right) with corresponding sequence diagram (left). Dotted arrows indicate what part of the sequence diagram
corresponds to what part of the code.

III. THE COMPOS LANGUAGE

A. Coordination constructs

A ComPOS coordination script consists of a set of guarded
actions, so called when-dos. The when part contains an input
action with a sender id and a message name, see (1) in Figure 3
for an example. The input actions must be mutually exclusive,
so when a message arrives, there is only one guarded action
that can match. The do part, also called a reaction, contains
a sequence of actions to be executed when the input message
is received.

Actions can be blocking or non-blocking. Assignment is a
non-blocking action that assigns a value to a local variable.
The value can be a literal, a reference to another variable, the
latest received message (using the message keyword (3)), or
a dereference for accessing a part of a structured value, for
example, a parameter of a message (4).

The send action is non-blocking, and sends a command or
request message to a receiver. Arguments to the message are
assigned in a similar way as variables.

The receive action is blocking, and waits for a response
from a previous request (2). The select action is also blocking,
and contains a set of mutually exclusive guarded actions (5),
like at the top level of the script. However, in a select, the
input actions are responses, whereas at the top level, they are
commands or requests.

There are also actions parallel and finish first that both
run a set of action sequences in parallel. The difference is
that parallel will block until all action sequences are finished,

whereas finish first will block until one of the sequences has
finished. These actions will be exemplified in Section IV.

B. The ComPOS interpreter

To execute ComPOS scripts, we implemented an interpreter.
When the interpreter starts running a composition, it sets
up connections to all currently discoverable services that are
specified in the configuration part of the composition. During
interpretation, connections are automatically set up or taken
down, as the corresponding remote services are discovered or
undiscovered, e.g., due to network errors. The interpreter has
an event queue for incoming messages, and handles events
in order of arrival. When receiving a message that matches a
when-do clause at the outermost level, the interpreter creates a
new activation for the corresponding reaction. The activation
is associated with the connection for the incoming message
starting the reaction. It contains values for local variables and
keeps track of the currently executing action. The interpreter
continues to execute the reaction of the current activation until
it blocks or finishes. If the reaction blocks, the activation is
suspended, and the interpreter continues by processing the next
message in the event queue. If the next message is a response
expected by a suspended activation, the interpreter continues to
execute that activation. A received message can match at most
one outer when-do, or blocked activation, and gets ignored if it
has no match. Messages sent to connections that are currently
down, are by default lost.2

2There is also functionality for declaring connections as reliable, in which
case the messages are buffered until the connection is up again.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

134

C. Semantics of incoming messages

A blocked activation will continue to run when the message
it is waiting for arrives. However, if a connection is temporarily
down, or if the remote service is not working as expected, this
might take a very long time, or might never happen at all. It
might also be the case that new spontaneous messages arrive
on the same connection, in which case it is unclear if this
should start a new reaction or not. For example, what should
happen if a new move message arrives, while there is already
an ongoing reaction for an earlier move?

Some possible ways of dealing with this situation are
1) start a parallel reaction for the new message
2) queue up the message and start its reaction when the

ongoing reaction has completed
3) ignore the new message
4) abort the current reaction and start a new one

In our interpreter, we have chosen solution 4: abort the current
reaction, and start a new reaction for the new message. This
way we avoid old activations that remain indefinitely, which
would happen in solutions 1, 2, and 3, and we avoid having
an unbounded number of simultaneous activations that might
arise from solution 1. Furthermore, solution 4 will prioritize
the latest information, in contrast to solutions 2 and 3. 3

D. Separating activations related to remote reactions

Sometimes, incoming spontaneous messages are indepen-
dent, and should not abort each other’s activations. For ex-
ample, if two messages sent from different parallel branches
trigger the same reaction in a remote service, those remote re-
actions are independent. Therefore, an activation is associated
not only with the connection of its initial message, but also
with a reaction id of the remote service that sent the message.
Messages on the same connection but with different reaction
ids result in independent activations that do not abort each
other. Different branches in a parallel action are viewed as sub-
reactions, and the interpreter automatically assigns different
reaction ids to them. This allows for having multiple ongoing
activations associated with the same connection. An example
of this is given in Section IV-B.

IV. EXTENDING THE BIRD WATCHER SCENARIO

We will now extend the bird watcher scenario to illustrate
the use of synthesized services and multiple remote reactions.

A. Composing compositions using synthesized services

A synthesized service is an abstraction mechanism that
allows a composition to provide functionality in the form
of oblivious services [6]. This means that a composition
can coordinate multiple services and provide their combined
functionality as an oblivious service for the rest of the system.
For example, if Maria finds out that the bird service gives
too many false negatives, she may want to combine her local
bird service with one she finds online. She decides to create

3There might be situations where options 1, 2 or 3 are more suitable.
They can, however, be implemented by relaying incoming messages to other
services. For space reasons, we omit this discussion.

a composition, SynthBird, with a synthesized service that has
the same interface as the bird service but is a combination of a
local bird service and an online bird service. It replies bird if
either of the local or the remote bird services recognizes a bird
in the picture, and not_bird if both the local and the remote
bird services reply not_bird, see Figure 4 (right). Messages
received by the synthesized service of a composition can be
used as guarded actions in the when-dos, and reactions can
send and reply messages to other compositions connected to
its synthesized service.

B. Reactions triggered from multiple remote reactions

Suppose now that Maria wants to add one more camera to
her system, to see the birds from more angles. She modifies her
composition and uses the parallel action to allow both cameras
to take and process pictures in parallel. We call this modified
version of the composition TwoCams, see Figure 4 (left). This
composition uses the synthesized service SynthBird to use the
combined local and remote bird-recognizing services.

The reaction ids are embedded in the request messages
sent to the SynthBird composition, allowing it to differentiate
between the different requests. This way, the SynthBird com-
position will create one reaction for each request, and send
responses back to the appropriate branch.

V. UTILITY ANALYSIS

One requirement of the composition language was to sup-
port mobile devices and weak connectivity. In this section,
we introduce a utility analysis to analyze what happens to
the utility of the system when devices come and go. We will
apply this analysis to the system shown in figure 4. The utility
analysis looks at what happens if one or several of the devices
disconnect from the others for some reason. This is to emulate
what happens if a device is, for example, out of reach, out of
battery, or has connection problems4.

The purpose of Maria’s system is to store images of birds
for later inspection. For the purpose of utility analysis, we
say that the system is useless if no image can get stored,
due to some devices being disconnected, and that the system
is useful if images can in some way get stored. The utility
analysis explores whether the system is useful or useless when
different sets of devices are disconnected. Table I shows the
utility analysis of the system in 4.

From Table I we see that having a reaction being aborted
when a new move command arrives, allows the system to still
be useful when devices come and go.

VI. RELATED WORK

A. Previous composition languages for Palcom

Svensson Fors [5] introduced compositions (called assem-
blies) and synthesized services in Palcom. These compositions
are stateless, limiting reactions to only contain actions for
sending messages and setting global variables. Svensson Fors’
implementation is included in the current release of Palcom

4The functionality for declaring connections as reliable allows for resending
messages when having temporary connection problems.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

135

Camera
Service

Camera 1

Camera
Service

Camera 2

Motion
Service

Motion
Sensor

Bird
Service

Remote
Device

Computer

Storage
Service

Bird
Service

TwoCams SynthBird

Fig. 4. Compositions used in the extended scenario. TwoCams (left) is a modified version of the original composition. SynthBird (right) is a composition of
two different bird recognizers. An initial move message to TwoCams leads to two parallel subreactions (red and blue), leading to two corresponding reaction
instances in SynthBird.

(4.0.19)5. Åkesson [11] created an experimental composition
language for Palcom, optimized for latency-critical distributed
applications. This language is similar to ComPOS in that
compositions have state and support nested and parallel action
sequences, but differs in the semantics of new spontaneous
messages that arrive during a reaction. In Åkesson’s approach,
new messages start a parallel reaction (option 1 in section
III-C), and indefinitely running reactions are avoided using
timeouts. This is in contrast to ComPOS, where the current
reaction is aborted (option 4). Another difference is that
Åkesson’s language is purely text-based, without any integra-
tion with a GUI, and is not intended for end users.

5http://palcom.cs.lth.se/Palcom/Download/Download.html

B. Web-service composition

Web-service composition has similarities to IoT service
composition, but differs in that web services are assumed to
be always available, wheras IoT services may come and go.

Examples of languages for web-service composition are
Jolie [12] and BPEL [13]. These languages have similar
features to ComPOS, with support for both parallel and finish
first actions. A main difference is, however, that Jolie and
BPEL support general computation rather than focusing on
composition, and they target professional developers rather
than end users like Maria from our example.

C. AmbientTalk

AmbientTalk [14] is a domain specific language developed
for programming message-based applications in mobile ad-
hoc networks. It is thus similar to ComPOS in its application

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

136

TABLE I
A UTILITY ANALYSIS OF THE SYSTEM SHOWN IN FIGURE 4.

Disconnected de-
vices

Status Reason

Computer Useless The system has nowhere to store
images.

Motion sensor Useless No move messages arrive to start a
reaction.

one Camera Useful The other camera can still take
a photo and store it because the
branch associated with that camera
works as intended. For every new
move message, the TwoCams com-
position creates a new activation
and aborts the old one.

Remote Device Useful The synthesized service will never
be able to send not_bird, but in the
case the local bird service detects
a bird the synthesized service will
reply with bird.

both Camera Useless No camera to take the photo to be
stored.

one Camera and
Remote Device

Useful If the local bird service detects a
bird in a photo from the connected
camera, that photo will be stored.

all other combi-
nations

Useless

domain, but differs in that it targets developers rather than
end-users, and does not separate between oblivious services
and compositions.

D. End-user development for IoT

There are different approaches for end-user development of
IoT systems. Some use programming by demonstration [15],
whereas others use different types of DSL:s, like TeC [16],
Midgar [17], and AppsGate [18].

TeC [16] is a framework with the goal of allowing end
users in different domains to create IoT applications. Similar
to ComPOS, TeC has a distributed programming model with
services (called activities) and compositions (called team de-
signs). However, its computational model is quite different:
activities have a kind of declarative spreadsheet semantics
with input and output events, and can be adapted by the user.
The team designs wire together input and output events of
activities, but do not themselves contain any event logic or
message adaptation.

Midgar [17] is a system that uses a graphical language to
enable users to create compositions. The programs in Midgar
are compiled and run on a central server.

AppsGate [18] is an end-user development environment,
specifically intended for programming smart homes. Similar
to ComPOS, the user uses a structure-oriented editor for
programming the environment, but AppsGate uses a pseudo-
natural language resembling English as its concrete syn-
tax. AppsGate supports event rules similar to when-dos in
ComPOS, but without any notion of request-responses, parallel
actions, or synthesized services as in ComPOS, thus limiting
the expressivity. AppsGate programs run on a central node in
the network, and the program implicitly keeps track of the

states of connected components, and supports relating them
using state rules. An example of a state rule is "While tem-
perature < 21 then keep the heater on". In contrast, ComPOS
scripts can be executed on different nodes in the network, and
all communication is based on explicit messages.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented ComPOS, a DSL for
composing services into IoT systems. ComPOS is a new
DSL supporting robust behavior in the presence of weak
connectivity. We have introduced the notion of utility analysis
and applied it to an example. We have shown how Maria,
a fictive bird watcher, can use ComPOS to build a simple
bird-watching system (Section II). To give an example of the
abstraction mechanism (synthesized services) and the parallel
construct, we extended the example to use two cameras and
two bird recognizer services (Section IV). In an IoT system
with mobile devices it is more a rule than an exception that
devices disconnect from the network for one reason or another.
To illustrate how ComPOS handles this, we have used our
utility analysis to analyse what happens when devices in the
system disconnect (Section V). In this particular example, we
showed that up to two devices could fail and the system would
still be useful. From the utility analysis, we conclude that it is
possible to build systems using ComPOS that are useful even
if some devices get disconnected.

In the future, we plan to build a tool that automatically
analyzes how useful a system is with respect to connection
failures. We would also like to continue looking into the
end-user programming perspective of ComPOS, and do user
studies to evaluate its usability.

ACKNOWLEDGMENT

This work was in part supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, and in part by
the Swedish Foundation for Strategic Research, grant RIT17-
0035.

REFERENCES

[1] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the internet of things,” in IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation:
08/09/2015-11/09/2015. IEEE Communications Society, 2015.

[2] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT:
Applications, challenges, and opportunities with China perspective,”
IEEE Internet of Things journal, vol. 1, no. 4, pp. 349–359, 2014.

[3] R. Petrolo, V. Loscri, and N. Mitton, “Towards a smart city based
on cloud of things,” in Proceedings of the 2014 ACM international
workshop on Wireless and mobile technologies for smart cities. ACM,
2014, pp. 61–66.

[4] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world:
software challenges in the IoT era,” IEEE Software, no. 1, pp. 72–80,
2017.

[5] D. Svensson Fors, “Assemblies of pervasive services,” Ph.D. dissertation,
Department of Computer Science, Lund University, 2009.

[6] D. Svensson Fors, B. Magnusson, S. Gestegård Robertz, G. Hedin,
and E. Nilsson-Nyman, “Ad-hoc composition of pervasive services in
the PalCom architecture,” in Proceedings of the 2009 international
conference on Pervasive services. ACM, 2009, pp. 83–92.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

137

[7] A. Åkesson, M. Nordahl, G. Hedin, and B. Magnusson, “Live program-
ming of internet of things in Palcom,” in Conference Companion of
the 2nd International Conference on Art, Science, and Engineering of
Programming. ACM, 2018, pp. 121–126.

[8] R. B. Smith, “Experiences with the alternate reality kit: An example
of the tension between literalism and magic,” in Proceedings of the
SIGCHI/GI Conference on Human Factors in Computing Systems and
Graphics Interface, ser. CHI ’87. ACM, 1987, pp. 61–67.

[9] A. Åkesson, M. Nordahl, G. Hedin, and B. Magnusson, “Demo: A
DSL for composing IoT systems,” in Proceedings of the 19th ACM/IFIP
Middleware Conference: Posters and Demos, 2018.

[10] A. Åkesson and G. Hedin, “Jatte: A tunable tree editor for integrated
DSLs,” in Proceedings of the 2nd ACM SIGPLAN International Work-
shop on Comprehension of Complex Systems, ser. CoCoS 2017. ACM,
2018, pp. 7–12.

[11] L. Åkesson, On the design of connector languages for latency-critical
distributed applications., ser. Licentiate thesis 2016:1. Department of
Computer Science, Lund University, 2016.

[12] F. Montesi et al., “Service-oriented programming with Jolie,” in Web
Services Foundations, A. Bouguettaya et al., Eds. New York, NY:
Springer New York, 2014, pp. 81–107.

[13] “Web Services Business Process Execution Language Version 2.0,”
OASIS, Standard, Apr. 2007.

[14] T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. D. Meuter,
“AmbientTalk: Object-oriented event-driven programming in mobile ad
hoc networks,” in XXVI International Conference of the Chilean Society
of Computer Science (SCCC’07), Nov 2007, pp. 3–12.

[15] T. J.-J. Li, Y. Li, F. Chen, and B. A. Myers, “Programming IoT
devices by demonstration using mobile apps,” in End-User Development,
S. Barbosa, P. Markopoulos, F. Paternò, S. Stumpf, and S. Valtolina, Eds.
Cham: Springer International Publishing, 2017, pp. 3–17.

[16] J. P. Sousa, D. Keathley, M. Le, L. Pham, D. Ryan, S. Rohira, S. Tryon,
and S. Williamson, “TeC: end-user development of software systems
for smart spaces,” International Journal of Space-Based and Situated
Computing, vol. 1, no. 4, pp. 257–269, 2011.

[17] C. G. García et al., “Midgar: Generation of heterogeneous objects
interconnecting applications. a domain specific language proposal for
internet of things scenarios,” Computer Networks, vol. 64, pp. 143–158,
2014.

[18] J. Coutaz and J. L. Crowley, “A first-person experience with end-user
development for smart homes,” IEEE Pervasive Computing, vol. 15,
no. 2, pp. 26–39, Apr 2016.

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

138

