
Heart Rate Estimation Algorithm From Wrist-based
Photoplethysmogram Using Subspace Learning

Method
Nasimuddin Ahmed

TCS Research & Innovation
Kolkata, India

nasim.ahmed@tcs.com

Shalini Mukhopadhyay
TCS Research & Innovation

Kolkata, India
shalini.mukhopadhyay@tcs.com

Varsha Sharma
TCS Research & Innovation

Kolkata, India
sharma.varsha1@tcs.com

Avik Ghose
TCS Research & Innovation

Kolkata, India
avik.ghose@tcs.com

Abstract—Wrist based devices, like smart-watches, fitness
bands and health monitors all provide a common sensor called
Photoplethysmography (PPG) to measure optical pulse signal.
This is usually used to derive the instantaneous heart-rate (HR),
which is useful while doing any exercise or to monitor on a
regular basis for chronic patients. However, one major issue with
the signal is that it is easily corrupted by ambulatory motion
generated by hand movements of the subject. Since, these devices
also come equipped with an independent motion sensor, namely a
tri-axes accelerometer, researchers have taken interest in trying
to correct the motion artifact in PPG using the accelerometer
as a reference noise signal. However, it is not a trivial problem
and hence, even after a substantial body of research, the prob-
lem remains unsolved, especially when considering on-premise
estimation due to the resource-constrained nature of wearable
devices. In this paper, we aim to solve this problem using subspace
based learning approach. Though this approach has been utilized
before, we have added some novel steps to the algorithm pipeline
and also made modifications so that the algorithm can be possibly
run on a typical wearable device. Our preliminary results show
efficacy and promise of our proposed approach.

Index Terms—Photoplethysmography (PPG), Motion Artifacts,
Heart Rate, PCA, Subspace Based Decomposition

I. INTRODUCTION

With the emerging era of wearable technologies and
smartwatches, one active area of research that these devices
have been used for, is longitudinal monitoring of physiological
signals. The most pervasive physiological sensor available on
wrist wearables is the Photoplethysmogram or PPG sensor.
However, this optical way of measuring arterial pulse has a
major drawback in being susceptible to motion artifacts due
to ambulation. Hence, discarding the motion artifacts during
the estimation of physiological parameters like heart-rate and
HRV (heart-rate variability) from ambulatory PPG becomes
an important research problem.

In recent years, a number of research works have been
proposed to enhance the signal quality of PPG in the
presence of motion artifacts. Essentially, heart rate estimation
algorithm could be characterized with three processing
steps, namely, pre-processing, signal de-noising and post-
processing. Pre-processing step involves baseline removal

and basic filtering; signal de-noising includes further noise
cleaning; post-processing part integrates heart rate tracking
and smoothing. So far, various methods such as adaptive
filtering [7] independent component analysis (ICA) [4],
Kalman filtering [5], wavelet de-noising [6] have been
investigated as effective de-noising methods. Recently, a
generalized framework TROIKA [1] and JOSS [2] had been
proposed which are quite effective and caters better accuracy
on the data-set of 2015 IEEE Signal Processing Cup (SP
Cup) competition [10]. However, since these algorithms
integrate several parameters tuned for the data-set and heavily
dependent on the post-processing method, their generalization
capability is limited. Moreover, the computational load is
another potential drawback while deploying the algorithm in
resource-constrained wearable hardware.

Apart from these methods, recently machine learning
based approaches [8], [9] have also gained popularity to
remove motion artifacts from PPG signal. The rationale is
to distinguish the right cardiac peak among the candidate
peaks in the spectrum, based on some computed features.
In practice, the realization of the machine learning based
approach is quite strenuous owing to large training phase.

Acknowledging these issues, a robust heart rate estimation
algorithm is proposed, which is characterized by the following
features:
• Instead of directly working on the signal, we transform

the signal into principal basis. Primarily, the PPG and
the simultaneously acquired accelerometer signal are
discretized and approximated by the number of principal
components.

• To discard the principal components associated with
motion or any other noise, two-stage verification method
is employed. Firstly, according to the energy contribution,
major principal components are only considered for
signal reconstruction. Secondly, we have exploited
the dominant frequency of principal component as a
similarity metric between PPG and accelerometer.
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• Eventually, the principal components allied with noise
are discarded and the true cardiac signal is reconstructed
for heart rate estimation.

II. RESEARCH OVERVIEW

Any physiological sensing by the wearable bio-sensor gets
distorted when it is subjected to the physical motion. The
conventional filtering method is reliably effective when the
frequency range of the motion is not overlapped with the true
heart rate signal. Incidentally, the human movement is very
low-frequency signal and it coincides with actual heart rate
signal(0.75 Hz to 3 Hz). Thus when the strong motion signal
overlaps with the signal of interest, estimating the heart rate
in time or frequency domain becomes a challenging problem.
Evidently, the motion artifact is additive in nature and the
acquired signal is an aggregate of both the true heart signal and
the motion signal. Let’s assume the following model represents
the PPG signal perceived from the wrist:

P = H +M (1)

Where P ∈ RN×1, is the received PPG signal. H is the true
heart rate signal and M is the motion signal.

Since the significant portion of motion artifacts is not
directly correlated to the actual PPG signal, we have aligned
this problem to subspace learning method where two major
components, motion signal and the true heart rate signal lies
in two distinct subspaces. The main objective is to distinguish
the motion signal subspace and eventually recovers the signal
of interest. Principal Component Analysis(PCA) is employed
as a subspace learning method which transforms the original
time series signal into principal subspaces. Generally PCA is
utilized as a dimensionality reduction technique; however, it
could be used as a de-noising method by suitable selection
of principal components. Essentially the PCA approximates
the original time series signal into a number of constitutive
principal components:

X ≈
N∑

k=1

PC(k) (2)

Where X is the original time series signal.

III. METHODOLOGY

Figure 1 illustrates the complete methodology for Heart
Rate Estimation algorithm.

A. Preprocessing

Preprocessing steps include baseline removal, the conven-
tional filtering process and the normalization. The frequency
range of Cardiac Signal spans from 0.75Hz to maximum 3Hz,
which encompasses the heart beats per minute ( BPM) from 42
BPM to 180 BPM. A bandpass filter with the same frequency
range is applied to the raw PPG signal to discern the cardiac

Fig. 1. Flow Chart of the proposed algorithm

signal. The filtering process subsequently eliminates the sensor
noise or any other noise outside of the signal of interest.
Furthermore, the signal is normalized as the PCA based
subspace learning based method is employed for subspace
decomposition. The normalization process is defined as:

SigNorm =
RawSig − µ

σ
(3)

Where µ is mean of the signal window and σ is the standard
deviation.

B. Subspace Decomposition

1) Hankel Matrix Conversion: To accomplish the subspace
decomposition, the original time series is mapped into a
sequence of lagged vectors. Consider a time series data
X = {x1, x2, ..., xN} where N is the number of total samples;
is transformed into L lagged vectors. The L is called as the
window length and for a meaningful interpretation, L must be
chosen as L < N/2. The Trajectory matrix TX ∈ RL×K of
the time series X is formed where K = N − L+ 1.

X =⇒ TXi,j =


x1 x2 · · · xL
x2 x3 · · · xL+1

...
...

. . .
...

xK xK+1 · · · xN


This trajectory matrix exhibits two important properties: 1)

The diagonal of the matrix imparts the complete time series;
moreover, rows and columns are the subseries of the actual
time series. 2) Cross-diagonals of TX is xj+i−1 = xi+j−1;
thus it is called as Hankel Matrix.
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2) Principal Component Analysis: Given a Hankel matrix
H ∈ Rm×n, PCA aims to learn a projection matrix W ∈ Rn×n

, projecting the input data into n-dimensional subspaces. Let
Y is the projected matrix and it is denoted as

Y = HW (4)

Where columns of the projection matrix W represents the
eigenvector computed from the covariance matrix of HHᵀ.
The covariance matrix is defined as

CH =
1

N− 1
HHᵀ (5)

Where N is the total number of samples.
The eigenvectors are structured in ascending order

according to the eigenvalues and the leading eigenvector is
the last column of the projection matrix W . The eigenvectors
(EOFs) of the matrix CH exploits the temporal covariance of
the time series, computed at different lags and represented as
Hankel matrix form. Essentially, the matrix Y is a projection
of time series onto the Eigenvectors. The columns of the
projected matrix Y are called principal components. These
principal components are again time series of the same length
of the Hankel matrix.

C. Subspace Decomposition of Accelerometer Signal

The motion subspace is approximated by the accelerometer
signal. An acceleration sensor measures the acceleration in
three axes; ACC ∈ R3, however as we are not interested
in direction of the motion the resultant is computed and
considered for further processing. After preprocessing as de-
scribed in section III, the subspace learning method is implied.
Eventually, the resultant time series is approximated by the
number of principal components:

ACCR ≈
N∑

k=1

PCACCR
(k) (6)

Where, ACCR is the original time series accelerometer
resultant signal and PCACCR

(k) is the PC vector.

D. Selection Of Principal Components

Having decomposed the PPG signal into orthogonal
principal components, now we need to discard the principal
components which are contributed by physical movement
or any other noise rather than the true cardiac cycles. To
recognize the components associated with motion or noise,
two-stage verification mechanism are employed.

1) Energy based principal component selection: Based on
the empirical analysis, it is observed that energy contributed
by the principal component is pivotal for ascertaining the
right principal components. The energy is estimated from
the eigenvalues obtained from the eigendecomposition of the
covariance matrix. It is defined as:

Algorithm 1: MARemovalSubspaceDecomposition

Data: PPG ∈ Rn×1 PPGDataWindow, ACCR ∈
Rn×1 ACCresultantDataWindow , WL

Result: CleanPPGV ∈ Rn×1

begin
Subspace Decomposition Using PCA.
[PPGPC,PPGDiag, PEigenV al]←−
SubspaceDecomposition(PPG,ACC,WL);
[ACCPC,ACCDiag,AEigenV al]←−
SubspaceDecomposition(PPG,ACC,WL);

FQTHR←− SamplingRate

FFTR
;

SizeV ←− (length(PPG)−WL+ 1);
s←−WL;
TotalEnP ←− 0;
while true do

PPGPCEn←−
Energy(PPGPC,PEigenV al, PPGDiag, s)
TotalEnP ←− (TotalEnP + PPGPCEn)
MaxFQP ←− FTSpec(PPGPCV );
n←−WL;
TotalEnA←− 0;
DiscardF lag ←− 0;
while true do

ACCPCEn←−
Energy(ACCPCV,AEigenV al, ACCDiag, n)
EnA←− (EnA+ACCPCEn);
MaxFQA←− FTSpec(ACCPCV );
if (((MaxFQP −MaxFQA) <=
FQTHR)and(PPGPCEn <
EnergyTHR)) then
DiscardF lag ←− 1;
break;

if ((TotalEnA >=MAXEnPerThr) then
break;

n←− n− 2;
if ((DiscardF lag == 0) then

CleanPPGV ←−
CleanPPGV + PPGPCV ;

if ((TotalEnP >=MAXEnPerThr) then
break;

s←− s− 2;

EnergyPC =
EigenValPC

sum(EigenValDiag)
× 100 (7)

Where EigenValDiag ∈ Rn×1 is a diagonal vector of
Eigen value matrix obtained from Eigen decomposition.

In order to remove the unwanted noise, the major principal
components are only considered where 90% of the energy is
concentrated.

WristSense'19 - Workshop on Sensing Systems and Applications using Wrist Worn Smart Devices

147



X ≈
M∑
k=1

PC(k) (8)

Where X is the original PPG signal and M << N. The
value of M is decided dynamically, according to the energy
contribution of principal components.

2) Frequency based similarity matching: We have tried to
establish some uniformity between the principal component of
PPG and accelerometer signal. Since the principal components
are itself the time series, spectrum estimation is exploited
where the dominant frequency is utilized as the similarity
metric. Formally, we have applied the Fourier Transform for
the spectrum estimation and tried to match the dominant
frequency of the principal components obtained from PPG and
accelerometer signal. The process is defined as

FQPPGmax = argmax
k

FQSPPPG(k) (9)

FQACCmax = argmax
k

FQSPACC(k) (10)

d = | FQPPGmax − FQACCmax | (11)

Where FQSPPPG(k) and FQSPACC(k) are the
frequency spectrum of PPG and accelerometer signal
respectively.

If the absolute difference d is less than the threshold then
the principal component is subjected for elimination. The
threshold is defined as the frequency resolution catered by
the Fourier Transform.

Although this method is beneficial, the problem arises
when PPG and motion signal coincides and the dominant
frequencies of both signal matches. This process would
eliminate the principal component associated with true
cardiac cycles. In order to avoid this kind of circumstances,
along with similarity matching, energy contribution of the
particular principal component is also considered. The energy
contributed by the PC is also validated with a particular
threshold and selected accordingly. The threshold is chosen
heuristically.

After discarding, the remaining principal components are
considered for the signal reconstruction. It is imperative to
note that as we are only computing the heart rate, rather
than transforming to the original time domain, the clean
signal is reconstructed by only adding the selected principal
components.

CleanPPG = PC(i) +PC(j) +PC(k) + ...+PC(t)
(12)

Where, i,j,k and t are the arbitrary indexes chosen selec-
tively. To visually understand the effectiveness of our algo-
rithm, we have plotted the frequency spectrums in Figure 2.

Figure 2(a) depicts the frequency spectrum of preprocessed
PPG signal for a particular time window. Here we can see
that the motion peak predominates and the cardiac peak is
smaller. Figure 2(b) shows the frequency spectrum of the
reconstructed PPG signal after the motion artifact removal, for
the same window, where the cardiac peak is clearly visible as
the dominant peak

E. Heart Rate Estimation Using Frequency Analysis
Inherently, rhythmic nature of the heart generates a pulsatile

component in the arterial blood which manifests a quasi-
periodicity in the PPG signal. Essentially, estimation of heart
rate is to find the periodicity of the PPG signal of a particular
time window and subsequently compute it for a minute. The
frequency spectrum is obtained using the Fourier Transform,
from which the dominant frequency with maximum amplitude
is selected. Instead of using any extensive post-processing
method, we have only restricted the search range of the
frequency spectrum for the current window. The search range
is computed using the previous estimation of the heart rate.
The process is defined as follows:

FQPPGmax = argmax
k∈[Fi,...,Fk]

PCPPG(k) (13)

HR = FQPPGmax × 60 (14)

Where Fi and Fk are the range of the frequencies obtained
according to the previous estimation.

IV. EXPERIMENTAL RESULTS
To demonstrate the efficacy of the algorithm we have tested

our algorithm with the data set from the 2015 IEEE Signal
Processing Cup. The dataset incorporates 12 training and 10
test data set which were accumulated from 18 to 58 years old
participants subjected to various physical activities. All sensors
data are sampled at the 125Hz sampling rate. The physical
activities include walking or running on a treadmill for various
intervals and intensive forearm and upper arm exercise. For
every participant, two channels of PPG signals, three channels
of simultaneous acceleration signals were acquired from a
wrist worn device. Additionally, the ECG signal was also
obtained simultaneously from the chest using ECG sensors
placed at the chest of the participant. The ground-truth heart
rate was computed from the ECG signal which is utilized as
the evaluation metric for the algorithm’s performance. The
complete details of the dataset are provided in [1].

A. Performance Metrics
In order to evaluate the performance of our algorithm three

performance matrics are used:
• Average Absolute Error: The Average Absolute Error

is defined as:

AvgErrorABS =
1

N

N∑
i=1

| BPMEst(i)−BPMGT(i) |

(15)
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(a) Frequency Spectrum Of PPG (b) Frequency Spectrum Of Reconstructed PPG

Fig. 2. The Frequency Spectrum of preprocessed and reconstructed PPG signal respectively

Where N is the total no of windows. BPMEst(i) is the
estimated HR for the ith time window and BPMGT(i)
is the actual HR.

• BlandAltman plots: The BlandAltman plot [3] is
the graphical and statistical elucidation of the two
measurement methods of the same entity. The resulting
graph is a scatter plot where the difference between the
two. measurements are plotted against the mean of the
two measurements. A horizontal line is drawn around the
mean difference and the 95% Limit of Agreement (LOA)
is estimated accordingly. The 95% LOA is defined as
the average absolute error ±1.96 standard deviation of
the absolute error (µEr ± σEr).

• Pearson correlation: Pearson correlation is a measure
of the linear correlation between Ground truth HR and
estimated HR. Higher correlation value manifests better
accuracy.

B. Results

To assess the performance of the algorithm, We have
tabulated the comparative result of the algorithm in Table
I with popular state of the art TROIKA [1] and JOSS [2].
Although the reported methods outperform our algorithm by a
little margin, the implementations are quite complex. TROIKA
and JOSS exploit the sparse signal recovery (SSR) algorithm
for spectrum estimation which is computationally extensive.
Conversely, we have used the Fast Fourier Transform(FFT)
which is very much feasible in Wearable Device. Moreover,
the reported algorithm are heavily dependent on the post-
processing process; subsequently integrates several parameters
for history tracking and smoothing. Increasing the complexity
in post processing hinders the generalization ability. On the
contrary, we have only defined and restricted the heart rate
range from the previous estimation as a post-processing
process.

For further analysis, we have evaluated the performance of
the algorithm by utilizing the Bland-Altman plot. The Bland-

Altman plot for 12 datasets is illustrated in Figure 3, where
the LOA is restricted to [-9, 7.7] BPM.

Fig. 3. Bland-Altman plot on the 12 datasets between the ground-truth and
the estimates of our proposed algorithm

Fig. 4. Scatter plot on the 12 datasets between the ground-truth and the
estimated HR of our proposed algorithm

In order to further assess the performance visually, the
scatter plot between the ground-truth HR values and the
estimated HR is illustrated in Figure 4. The fitted line is
represented by Y = .952X+ 5.93 where X indicates the
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TABLE I
HR ESTIMATION RESULT IN TERMS OF AVERAGE ABSOLUE ERROR.

SUB1 SUB2 SUB3 SUB4 SUB5 SUB6 SUB7 SUB8 SUB9 SUB10 SUB11 SUB12 AVG

TROIKA 2.87 2.75 1.91 2.25 1.69 3.16 1.72 1.83 1.58 4.00 1.96 3.33 2.42

JOSS 1.33 1.75 1.47 1.48 0.69 1.32 0.71 0.56 0.49 3.81 0.78 1.04 1.28

Algo 3.01 2.99 2.04 2.18 2.31 2.53 2.51 2.29 1.93 5.01 3.20 4.20 2.85

ground-truth heart rate, and Y indicates the corresponding
estimated HR. The goodness of fit R2 is denoted as 0.97.

It is worthwhile to mention that, since in dataset the time
window is restricted to 8 seconds, the effective frequency
resolution for DFT is limited to 0.125 Hz which imply 7.5
BPM error in heart rate estimation. Considering the frequency
resolution for DFT the performance of our algorithm is quite
reasonable.

V. CONCLUSION

In this paper, we have proposed a subspace based, real-time
algorithm for estimation of Heart Rate from wrist-based PPG
signal corrupted by motion artifacts. Our preliminary results
show the promise for an efficient method by achieving an
accuracy comparable to more complex approaches. As a future
path of research, we would like to explore the possibility
of reconstruction of motion corrupted PPG signal for more
advanced analytics like hypertension and heart-rate variability
monitoring from ambulatory PPG.
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