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An understanding of the movement and utilisation rates of 
vehicles has many applications in the ‘smart city’. The 
increasing availability of location and movement data from 
smartphones, in-vehicle  loggers etc. allows for new applications 
of vehicle use analytics to be developed using a diverse range of 
data sources. However, for wide-scale application it may not be 
feasible to rely on consistent data from all possible sources - a 
need arises to process disparate data sources into a unified 
format. Raw user location data also presents significant issues 
around user privacy and the need to securely store and transmit 
any personally identifiable data. This paper covers the problem 
definition and development of a system to classify vehicle user 
driving patterns. A system was proposed to allow user driving 
patterns to be characterised in a way that does not explicitly 
store large volumes of location data while retaining key 
information needed for behavioural analysis. User driving data 
was converted to a personal profile based on statistical 
likelihood of vehicle use over a 24-hour period. Dynamic Time 
Warping was used to quantify the match between a new user’s 
calculated profile and established driving archetypes. 
Additional profile features were tested in trained multi-class 
classification models including typical journey length, no. 
journeys etc. This was found to reduce the number of days of 
data needed to make a match for most users. This increases the 
feasibility of representing vehicle users in relation to driving 
archetypes rather than explicitly storing sensitive location data. 
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I. INTRODUCTION 

With the increasing availability of wide-scale location 
tracking and behavioral data capture, the location patterns of 
people and tracked assets have seen an increasing variety of 
uses in recent years. A broad range of services and 
applications provide personalized services, analyze trends 
over large populations or optimize systems in real time 
based on location tracking data. The field of vehicle tracking 
and vehicle-based behavior analysis is no exception to this 
trend, with vehicle location and usage patterns of particular 
interest to a range of applications, including: 

 Navigation and optimization services – while 
GNSS-based navigation services are an established 
field, route optimization services can require wider 
ranges of data from other vehicles etc. 

 Fleet management – commercial fleet management 
packages can include real-time position monitoring 
of fleet vehicles for driver behavior tracking or 

route optimization [1]. Location monitoring can 
also be used to ensure appropriate asset utilization 
rates and improve fleet efficiency.  

 Car park management – monitoring and 
optimization of parking space utilization rates 
require a localized measure of vehicle use patterns. 

 Smart grid & Vehicle-to-grid services – for electric 
vehicles, use of the on-board vehicle battery for 
smart grid optimization can require localization and 
knowledge of vehicle use patterns. Driver 
behavioral patterns have been shown to affect the 
potential energy impact of V2G services [2].  

 Smart city applications – for wider analyses of 
people flows, services etc. within a smart city 
environment, vehicle mobility data can provide 
value as a data stream. 

 Internet of Things – vehicles are expected to be 
further integrated into wider Internet of Things 
services [3], potentially requiring location and use 
to be monitored as part of smart service offering. 

 
Many of the above applications have the common thread 

of tracking the vehicle as an asset to be utilized in some 
form. Applications in this vein often require the availability 
of the tracked assets to be measured, characterized and in 
some cases predicted. In the case of vehicle tracking, this 
introduces the need to understand the behavioral patterns of 
the vehicle user. 

The application of positioning technology to the tracking 
of vehicles at scale, especially where centralised processing 
of data from multiple vehicles is required, introduces issues 
around how data can be collected to ensure clarity, 
consistency, reliability and to maintain privacy of the vehicle 
user. This paper seeks a solution to allow vehicle usage 
patterns to be characterised for behavioural analysis or 
prediction, combining data from multiple sources that 
include location-based and non-location based data.  

II. VEHICLE DATA ISSUES 

The range of data collection strategies for vehicle 
location tracking present some issues for wide-scale 
application. Most data collection methods rely on the 
introduction of additional sensor hardware or software to 
each monitored vehicle, which makes consistent application 
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of a single solution across diverse vehicle and user types less 
feasible. In wide-scale application, it must be possible to 
process and compare vehicle tracking data that may arrive in 
different formats. 

An additional issue arises in user-centred vehicle 
tracking. Where a single user drives a single vehicle, the 
issue of tracking user or vehicle does not present any major 
reliability problems. However, a significant number of 
vehicles have multiple potential drivers, both in domestic 
contexts (family vehicles) and commercial (fleet 
applications).  In this case, relying on a single user as data 
source for a multi-user vehicle may introduce false negative 
errors into any application. In applications that rely on 
consistent knowledge of vehicle status such as vehicle-to-
grid battery use, this can introduce potential failures in the 
system. 

As with any application collecting location data from end 
users, vehicle tracking also presents challenges related to the 
privacy and data security of its participants, especially in 
light of recent data policy changes such as the EU General 
Data Protection Regulation (GDPR) [4]. Location data in 
particular is considered highly sensitive, with as few as four 
location points making it possible to uniquely identify 
individuals [5]. Increasing awareness of the issues around 
data privacy and its implications in data-analysis applications 
are reflected in recent policy changes [6]. It is essential from 
both an ethical and legal standpoint that sensitive data, 
whether collected directly or inferred through combination of 
sources, is minimised where possible and treated 
appropriately where collected. 

It is therefore necessary to consider data collection and 
analysis that is as robust as possible to uncertainties, while 
also minimising the amount of sensitive user data that is 
collected, transmitted and stored. 

III. METHODOLOGY 

 The methods presented in this study seek to address the 
data collection and processing issues identified in the 
previous sections: to extract vehicle use profiles from 
collected user data and represent them in a more abstracted 
form. For the purpose of behavioural pattern profiling, 
statistical profiles of vehicle use were constructed. A major 
focus of this work was the ‘activity profile’, where user 
driving data was converted to a personal profile of the 
statistical likelihood of vehicle use over a 24h period, 
separated by weekday/weekend. This statistical profile offers 
the following benefits: 

 Allows the clustering of similar users by a typical 
pattern of activity. 

 Allows further analysis to be a step removed from 
the variations caused by different data sources. 

 Addresses some privacy issues by removing direct 
location data associated with the user.  

 Potentially allows users to be represented as a 
combination of statistics rather than storing specific 
user locations over longer time periods. 

 It was proposed that domestic vehicle users could be 
categorised against a set of driver archetypes representing 
common driving behavioural patterns. These archetypes 
were represented as a set of baseline activity profiles to 

which new user data could be compared. The following 
sections of this paper present the development of vehicle use 
archetypes and the classification of new vehicle profiles. 

 The generation of the vehicle use archetypes was 
achieved using an Agent-Based simulation model to generate 
large volumes of driving data according to predefined rules 
and is presented in Section V. This model was used to create 
controllable ‘baseline’ versions of the defined user 
archetypes, as well as generate large datasets of simulated 
users with a known archetype for testing. The classification 
of new users was achieved using trained machine learning 
models, presented in Section VI.  

IV. DATA SOURCES USED 

The vehicle activity profile was designed to be 
constructed from diverse data sources. In this study, three 
data types were used for testing: vehicle-based GPS/speed, 
simulated activity data and user-based personal device data.  

A. GPS/Speed Data 

The major dataset used in this study is a publicly available 
dataset of electric vehicle drive cycles collected in 
Winnipeg, Canada [7]. This data was collected from 76 
vehicles with users across a range of population 
demographics. The data included timestamped GPS-based 
logs and speed data for each journey made within the data 
collection period. Parking events were labelled with a 
location category such as ‘home’ or ‘street’. Activity 
profiles were constructed from this data by denoting the 
vehicle as ‘in use’ based on significant GPS movement 
relative to the previous recording and nonzero speed at each 
recorded timestamp. Where the GPS data and speed data 
showed different results, it was assumed that sensor error 
had occurred, and the data was omitted from the profile. 
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Fig. 1    Clustered Domestic Driving Activity Profiles, Winnipeg Dataset 
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In order to validate the choice of domestic use profiles 
constructed in the Agent-Based Model as discussed in 
Section V, clustering analysis was performed on this dataset. 
A k-means method was used on the calculated activity 
profiles to examine the most common activity demographics. 
After several trials with varying numbers of target clusters, it 
was found that three major clusters emerged from the 
analysis, as shown in Fig. 1. These profiles were matched 
roughly to three activity types: low general use typical of a 
vehicle not used for a work commute cycle; semi-structured 
use typical of users with a varying schedule; and highly 
structured use typical of a work commute cycle.  

B. Simulated Data 

Data for both the baseline driver archetypes and a 
number of varied simulated users were generated using an 
Agent-Based Model as detailed in Section V.  

C. Personal Device/Bluetooth Beacon Data 

Alternative vehicle use data was collected for a single 
participant via the driver’s personal smart device. A log of 
driving activity was made available by placing a Kontakt 
Bluetooth iBeacon [8] in the participant’s vehicle. The 
beacon emits a uniquely identifiable signal at an interval of 
several signals per second, which can then be detected by 
any device listening for Bluetooth iBeacon signals. It was 
assumed that the user was driving the vehicle whenever 
their device detected the vehicle’s beacon. This data was 
collected via a third-party app [9] with functionality for both 
GPS-based geofencing and local iBeacon logging. Prior to 
data collection, the participant registered the Bluetooth 
beacon and several geofenced areas such as their home and 
work locations as monitored zones in the application. The 
data output from this application was formatted as a series 
of detection events as the user moved between monitored 
areas, including the detected location name and an entry/exit 
time for each event. Activity profiles were constructed from 
the ‘in-use’ data from the beacon logging: allowing this data 
to be analyzed alongside the vehicle-GPS data despite the 
difference in format.  

It should be noted that the personal device/beacon setup 
collects data from individual drivers rather than from the 
vehicle itself. This means that data must be collected from all 
drivers in order to receive a comprehensive log of the 
vehicle’s true use profile. The data used in this study was 
collected from a vehicle with a single active driver, however 
for multi-user vehicles, this approach introduces potential 
uncertainty in the usage data. 

V. AGENT-BASED MODEL ARCHETYPE GENERATION 

An agent-based model was developed to simulate 
archetypal driving behaviour profiles. Using this model, a 
number of users or ‘agents’ were generated, each with their 
own set of behavioural rules. 

This model aimed to simulate driving patterns for any 
number of individual agents over a defined time period. In 
order to simplify this process, the full physical location of 
users was not considered. Users were instead assigned a set 
of location categories such as ‘home’ or ‘work’. Journeys 

between these locations were represented by their duration, 
rather than by a physical distance. This allows realistic 
vehicle use patterns to be simulated without the need to 
calculate large volumes of co-ordinate location data.    

Agent behaviours were modelled from a combination of 
core and additional behaviours. Core behaviours of each of 
the simulated domestic user archetypes are detailed in 
TABLE I.  The archetypes in this table were designed to 
cover the majority of typical domestic driving styles and 
were validated using the clustering analysis on real driving 
data as discussed in Section IV. Four major archetypes were 
constructed, with some sub-types included as minor 
archetypes as detailed in the table. Each of the simulated 
agents were generated from one of the described archetypes. 
Factors such as the typical time a full-time agent leaves 
home for work were generated to be unique to each agent. 

The agent-based simulation comprised the following 
main steps: 

 Define the number of agents from each archetype 
and the time period to be simulated. 

 Generate individual agent properties from archetype 
templates, assign each agent to a simulated vehicle. 

 At the start of each simulated day, generate a set of 
intended journeys for each of the agents. These 
include core journeys based on agent archetype and 
additional journeys randomly drawn from a 
distribution that favours the afternoon-evening 
period. 

 When the simulation reaches the start of an 
intended journey, assign this journey to the correct 
vehicle and increment journey duration and vehicle 
fuel level until the journey has ended. Update 
location category of vehicle and user. 

The simulation outputs included the in-use status and 
location category of each of the simulated vehicles over the 
defined time period. The in-use status was used to calculate 
statistical vehicle activity profiles as defined in Section IV. 
An example of the use profile for a ‘full-time work’ agent 
generated from the model is presented in Fig. 2. It can be 
seen that the generated profile takes a similar shape to the 
full-time workers identified in the Winnipeg dataset in Fig. 1, 
with distinct peaks in activity in the morning and evening. 

TABLE I.  DOMESTIC USER DRIVING PATTERN ARCHETYPES 

Major 
Class 

Archetype 
Main Journeys 

Main 
Locations 

Minor Class  
Sub-types 

Full-time 
worker 

 2 journeys 
 All Weekdays 
 Morning/Afternoon 
 Regular timing 

Work 
Home 
Oher 

 Base 
 Additional AM 
 Additional PM  
 Additional Lunch  

Non-
regular 
work 

 2 journeys 
 Some weekdays 
 Less regular times 

Work 
Home 
Other 

 Base 

Non-
worker 

 No regular 
journeys 

Home 
Other 

 Base 
 Flat profile 
 Any time 

Shift 
worker 

 2 journeys 
 All Weekdays 
 Offset Full-time 

pattern 

Work 
Home 
Other 

 Base 
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Fig. 2    Example of Simulated Driving Activity Profile for Full-Time Work 

While the Agent-Based Model was used in this study to 
generate the baseline archetypal profiles for comparison to 
real user data, the simulation techniques can also be used to 
generate large sets of user driving patterns for other 
applications, including the analysis of the level of activity at 
different times of day over a large group of diverse users. 

VI. USER ARCHETYPE CLASSIFICATION 

Once archetypal profiles were established, new users 
could be matched to a corresponding archetype. The 
advantages of this approach are as follows: 

 Allows assumptions based on archetypes to be 
applied to new users (for example, likely location 
category of vehicle at given times if location data is 
not available, or allowing feedback into how a 
user’s driving pattern affects their suitability for 
driving an electric vehicle of a given maximum 
range). 

 Allows a less noisy activity profile to be estimated 
for users from a short sample of vehicle use data. 

 Potential for representation/storage of user as a 
distortion/combination of archetypes, rather than 
explicitly storing and transmitting historic user 
location data. 

 In the following sections, a range of classification 
methods were tested on both simulated and real driving 
pattern data. The simulated data was used for a measure of 
correct classification rate, as each simulated user was defined 
as a specific archetype. For the real dataset, user data was 
anonymised, meaning that the true demographic of each user 
was not known. This data was therefore used to test the 
number of days taken to settle on a consistent classification.  

A. Dynamic Time Warping 

Several methods were considered for the classification 
process. One factor of particular importance was the ability 
to compare the shape of a driving profile without relying on 
direct comparison of each timeslot of the day. This allows a 
worker making their morning commute at 07:30 or a worker 
commuting at 09:00 to both be sorted into the ‘Full-time 
Work’ archetype, despite beginning their journey cycles at 
different times of the day.  

This issue was addressed with the use of a Dynamic Time 
Warping (DTW) algorithm. This technique allows two 
vectors to be stretched along a single axis to find the 
minimum distance between points of one vector to the other. 
In effect, this algorithm compares the shape of two vectors 
and outputs the calculated distance between them at their 
optimum match. Further detail on the exact algorithm used in 

this study can be found in the MATLAB documentation [10]. 
The calculated distance between vectors could then be used 
as some measure of the ‘fit’ to different archetypes, where a 
larger distance between user data and an archetype suggests a 
poorer fit to this archetype. In this study, activity profiles 
were all scaled to have a maximum value of 1 to allow 
comparison of patterns without bias from variations in 
overall usage rates. Fig. 3 shows results of dynamic time 
warping on an example user from the Winnipeg dataset, as 
compared to the minor archetypes described in TABLE I. 
The sections of this figure are: Fig. 3a) unaltered user profile 
plotted against the unaltered matched archetype, Fig. 3b) 
post-DTW warped profile and archetype with optimum 
match levels, and Fig. 3c) a bar chart of the relative level of 
‘fit’ of the user to each of the established archetypes. This 
level of fit is calculated as the inverse of the DTW distance, 
so that a higher value denotes a closer match.  

The time-warping comparison to archetype was tested on 
data from the simulated, GPS/speed and personal/beacon 
datasets. The estimation of class was taken as the archetype 
with the smallest calculated distance. TABLE II. presents 
results from this analysis. For the simulated and 
personal/beacon data, where the true demographics of the 
vehicle drivers were known, Minor Class was considered 
correct if the estimated archetype was an exact match to the 
true demographic, while Major Class was considered correct 
if the estimated archetype was any sub-type of the same 
major archetype as the true demographic. The results show 
that the time-warping method is capable of correctly 
matching a majority of profiles to their correct archetype, 
however the number of days of data needed to achieve this 
majority was considered to be too high for practical 
application: it is unreasonable in most applications to expect 
a system to gather over one year of data before producing 
accurate results. 

TABLE II.  DYNAMIC TIME WARPING CLASSIFICATION RESULTS 

Dataset 
Correct 
Minor 

Class Rate 

Correct 
Major 

Class Rate 

Mean No. 
Days to 

70% Rate 

Mean No. 
Days to 
Stabilize 

Simulated 71% 84% 395 398 

Vehicle 
GPS/Speed 

- - - 92 

*Personal 
GPS/ Beacon 

- - 68 76 

*Single participant 

 

 
Fig. 3    Dynamic Time Warping Match of Real User Data to Archetype 
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It should be noted that the personal beacon dataset tested 
here was collected from a single participant, meaning that, 
while this user was correctly classified, a larger scale study 
would be needed for a meaningful overall classification rate.  

In order to improve the classification performance with 
fewer days of data, several classification models were tested 
with a larger range of inputs than the DTW results alone. 

B. Classification Model 

While the Dynamic Time Warping output alone could be 
used to classify new activity profiles, trained classification 
models were tested for improvement on the number of days 
of data needed to reach accurate results. The classification 
models tested were selected based on the ability to perform 
multi-class classification problems and output a statistical 
confidence level on each of the possible output classes. 
Some common classification models used for multi-class 
applications are: 

 Naïve Bayes (NB) - generally favored in cases that 
require a simple structure and quick 
implementation [11]. The major assumption 
applied to this model type is that each of the input 
features can be considered to be independent given 
the outcome class. However, even when this 
assumption is not true, Naïve Bayes models have 
been observed to perform well against other 
methods [12]. 

 K-Nearest Neighbors (kNN) - a non-parametric 
method based on the most similar available 
examples from the training set [13].  

 Decision Tree/Random Forest (RF) - a non-
parametric method, decision trees are able to 
represent highly nonlinear relationships without 
manual specification of the expected complexity of 
the model [14]. 

 
For each of the model types tested, simulated user data 

was split into two phases: training data and test data. Data 
from 90 users simulated over a 10-year period, with an even 
number of users in each sub-archetype as defined in TABLE 
I. 50% of the users were assigned for the training phase, 
where the models were constructed to best fit the training 
data. The models were then tested on the remaining data and 
the results compared to the true archetypes for each test 
user.  

The input features tested were: 
 Dynamic Time Warping distance to each archetype 

activity profile 
 Percentage of time spent at ‘home’ location 
 Percentage of time spent in use 
 Mean no daily journeys 
 Mean journey duration 
 Mean overall likelihood of vehicle use. 

 
While models trained on a full set of these features did 

improve the time needed to reach a given level of accuracy 
relative to DTW estimation alone, the features were 
examined to determine their contribution to the classifier 
performance.  

C. Feature Selection 

As a way to assess the relative importance of each of the 
input features to the overall performance of the classification 
models, a series of tests were performed with classifiers 
trained on different sets of features. The percentage change 
in the classifier performance when each feature was omitted 
from the full set is presented in TABLE III. From these 
results, it can be deduced that the dynamic time warping 
match contributes significantly to the classifier performance. 
The differences made by the other features are all 
significantly smaller, suggesting some amount of redundancy 
in the full set of additional features that could overcomplicate 
the model. Journey duration and overall mean likelihood of 
movement did not contribute to correct classification. The 
proposed optimal set of input attributes were: 

 DTW distance of each sub-profile 
 Percentage of time observed at ‘Home’ location 
 Mean daily number of journeys. 

 
The results of this optimized feature set tested on 

simulated users of known archetype are shown in Fig. 4, 
Fig. 5 and TABLE IV. While all of the trained classifiers 
can reach a correct classification rate with significantly 
fewer days of data than the time-warping activity profile 
comparison alone, of the model types tested there is not a 
clear best performer. The Random Forest model was able to 
achieve the highest correct classification rates by the end of 
the training period, but its performance was unstable over 
time, as indicated by the greater fluctuation than the other 
models seen in Fig. 4 and Fig. 5. The Naïve Bayes model 
achieved the highest correct rate within the first ten days of 
training data: in applications that require quick 
characterization of user patterns, this may take priority over 
the slight decrease in longer-term performance. 
 

Whichever classifier is used in application, the 
significantly faster matching process and high correct match 
rates suggest that the classification approach taken in this 
work is feasible as a method to characterize vehicle use 
patterns without explicit storage of more sensitive user 
location data.  

TABLE III.  FEATURE SELECTION RESULTS (K NEAREST NEIGHBORS) 

Feature Omitted 
Correct Minor Class 

Rate Change 
Correct  Major 

Class Rate Change 
Time-Warping 

Distance 
-59% -20% 

% Time ‘Home’ 0% 0% 
% Time ‘In-Use’ 0% 0% 

Mean No. Journeys -3% -3% 
Mean Duration +17% +3% 

Mean Likelihood of 
Vehicle Use 

+10% 0% 

TABLE IV.  CLASSIFIER RESULTS ON SIMULATED USERS, 2610 DAY 
TRIAL 

Classifier 
Correct 
Minor 

Class Rate 

Correct 
Major 

Class Rate 

No. Days to 
80% Major 

Rate 

Mean No. 
Days to 
Stabilize 

DTW 71% 84% 349 398 

KNN 80% 93% 2 332 

NB 76% 96% 2 444 

RF 82% 98% 3 2170 
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Fig. 4 Comparison of Classifiers - Rate of Correct Major Class 

 

 
Fig. 5 Comparison of Classifiers - Rate of Correct Minor Class 

VII. CONCLUSIONS 

Given the increasing availability of user location data 
sources, vehicle usage data requires analytical approaches 
that are sensitive to the uncertainties involved in data 
collection and respond appropriately to data privacy 
concerns. Vehicle driving data can be collected from a range 
of data sources, but for wide-scale application it may not be 
feasible to rely on consistent data from all sources. Where 
wide-scale data is collected from diverse sources, this 
indicates a need to process data into a format that is more 
general. User location data also presents significant issues 
around user privacy and the need to securely store and 
transmit any personally identifiable data. 

A system was proposed to allow vehicle asset use 
patterns to be characterised in a way that does not explicitly 
store large volumes of location data and allows for analysis 
of driving patterns relevant to a range of vehicle behaviour 
analysis or prediction applications. User driving data from 
diverse sources was converted to a statistical activity profile 
of vehicle usage over a 24h period.  

An Agent-Based Model was used to generate a set of 
driving archetypes, which were validated against actual 
domestic vehicle driving data and were used as a basis of 
comparison for new driving data profiles.  

Dynamic Time Warping was used to quantify the match 
between a new user’s profile and the established driving 
archetypes, but this approach alone took unrealistically large 
volumes of data to achieve the desired level of matching 
accuracy. Other input features were tested in trained multi-
class classification models (K Nearest Neighbours, Naïve 
Bayes, Random Forest). This was found to improve the 
number of days of data needed to make a match for most 
users. The set of features needed to best classify domestic 

driving archetypes was the time-warped match to archetypes, 
percentage of time in ‘home’ location and mean daily 
number of journeys, with the Random Forest model giving a 
correct classification rate of 82% in a test on simulated data. 

 The archetyping methods proposed in this paper have 
potential for use across a range of application fields, 
including to inform the prediction of vehicle dwell and 
journey times. Further testing with large datasets of real 
driving data would better inform the method and ensure a 
comprehensive set of driving archetypes were developed. 
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