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Abstract—Mobile applications commonly use on-device sensors
to continuously provide context: temperature, position, sound,
etc. By collaborating to sense context, devices can save energy
and share rare capabilities with minimal tradeoffs in sensing
quality. Further, by leveraging already active communication
behaviors, ambient context information can be collected at very
little cost. We present a generic collaborative sensing frame-
work, SCENTS, to support collective sensing for mobile IoT
applications. SCENTS leverages two truths about IoT networks:
(1) devices participate continuously in low-level device discovery
mechanisms and (2) nearby devices tend to have similar values
for many ambient context properties. We show that SCENTS
balances sensing fulfillment and the fairness of energy consump-
tion across devices. We measure the performance of SCENTS
using real IoT devices and real world smart-city scenarios.

Index Terms—Context awareness, Sensor systems and appli-
cations, Internet of Things

I. INTRODUCTION

The past decade has seen a rise of IoT devices with
multiple low-powered commodity sensors and the ability to
communicate wirelessly with nearby devices. Such devices are
found in myriad domains, from wearables to home automation
and smart city infrastructure. From a sensing perspective, an
IoT device periodically sends readings from on-board sensors
to a locally hosted application, to a paired device, or to the
“cloud” via a gateway. This design works well for enterprise
applications and smart homes. However, the popularity of
applications that rely on personal devices remains low. Many
of these devices are battery-operated, which limits the number
of on-device sensors and the sampling frequencies. On the
communication front, nearly all mobile devices are capable
of short range wireless communication (e.g., via Bluetooth,
ZigBee, etc.), and for some devices short-range connections
are the only option. However, the use of these links to make
sensed data available in the vicinity is underdeveloped.

Many envisioned pervasive computing applications rely on
continuously sensed information about the surroundings, but
the cost of continuous sensing on battery-operated devices
can be prohibitively high [6]. It is therefore reasonable to
enable devices to collaborate to sense a collective context state.
For instance, children participating in a walking school bus
may share movement or activity patterns, indicating a shared
route to school [33]. The use of a device-to-device network to
allow co-located IoT devices to collaborate could: (1) enable
user-facing applications to leverage sensing capabilities of
nearby devices when the local device lacks some capability;

(2) allow nearby devices to save energy spent on sensing
“similar” values; and (3) enable sensing-heavy applications
to be less reliant on infrastructure connections. In addition
to bringing computation closer to the user [1], this last point
eases concerns associated with offloading potentially private
data to a third party [38].

Section II describes existing work in collaborative context
sensing, which often involve cloud-based control [16], [37].
Rather than addressing an off-line data collection goal, we aim
to satisfy local needs for sensed context using local sensing
resources. We propose SCENTS (Sensing Collaboratively in
Everyday NeTworkS), which allows devices to leverage local,
device-to-device communication to actively request and supply
locally sensed context. Our key contributions are:
• We construct a framework that utilizes commonly available

connection-less communication to share sensing capabilities
directly among co-located heterogeneous IoT devices.

• We devise a heuristic to identify the best mechanisms for
sensing, accounting for sensing and communication costs,
and predicting and adapting to mobility-induced failures.

• We evaluate SCENTS on an extensive set of IoT scenarios
using an expressive and realistic smart city simulator.

II. RELATED WORK AND SCENTS VISION

To motivate SCENTS, we introduce two application sce-
narios that we revisit throughout the paper. We then discuss
efforts related to SCENTS, described in the next section.

Application Scenarios. Consider a walking tour group [36]
whose participants carry smartphones that inform them about
the surroundings: weather, nearby crowds, wait times for
points of interest, etc. Participants’ devices could individually
collect all of the needed information. However, these devices
need to communicate simply to maintain the group’s digital
connectedness. By leveraging these group messages, devices
can also share the burden of sensing needed ambient context.

As a second scenario, imagine a jogger in a smart city. The
jogger does not desire to carry a bulky smartphone but instead
wears only a simple watch with wireless connectivity but no
sensing capabilities. This device can opportunistically collect
information from devices embedded in the municipal infras-
tructure [3]. In this way, the jogger can log run details, from
pace to the weather or crowd conditions. This information is
similar to the details that smartphone running apps currently
collect, but with less cost and burden to the jogger.
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Related Work. The IoT raises new challenges in both
sensing and collaborating among highly-capable yet battery-
operated devices [1], [10]. Many efforts simplify applications
by abstracting or virtualizing their use of sensors [8], [24] or
by enabling access to sensors on nearby devices [4], [43].
Even given these efforts, sensing remains a major cost of
IoT applications [3]. Other approaches allow devices to rely
on edge services to perform sensing on their behalf [35] or
intelligently task sensors based on predicted high-level context
values, thereby reducing sensing cost [20], [29].

Cloud-assisted collaborative sensing aims to maximize sens-
ing coverage or improve data quality [16], [21], [37]. Most
approaches collect information for use offline; a few push data
back to distributed devices [9], [27]. In sensor networks, local
neighborhoods [28], [40] aggregate collected data before send-
ing it to a gateway. The challenge of uncoordinated collabora-
tion in a frequently changing network using only a local view
remains open. Work in device-to-device collaboration [17],
[34] sets the stage for our efforts, and defining long-lived
groups of co-located users for the purpose of sharing local
information has a growing interest in smart cities [12], [23],
[36]. Yet opportunistic context sharing over highly dynamic
links demands transient light-weight abstractions.

Our own prior work shares context among co-located de-
vices [11], [26]. These prior efforts are passive and oppor-
tunistic. In SCENTS, in contrast, the surroundings become an
extension of the device’s own capabilities that applications on
the device can abstractly access on-demand.

Background. In SCENTS, devices must opportunistically
discover what sensing capabilities are available nearby. An
important technical building block is continuous neighbor
discovery, made possible by the myriad communication capa-
bilities in the IoT (e.g., BLE, IEEE 802.15.4). These widely
used protocols create schedules of sending and receiving
beacons to enable discovery of nearby devices [5], [13], [22].
SCENTS places contents related to shared sensing in these
protocols’ periodic beacons sent by the BLEnd protocol [19].

III. COLLABORATIVE SENSING IN SCENTS

In SCENTS, we consider the application and the device
hardware as two layers of an IoT node, where an application
generates queries for sensor information, and the device uses
sensing and communication capabilities to satisfy queries.
SCENTS sits between the two and governs collaboration
among nodes. We first formulate the dynamic collaborative
sensing problem and then present the details of SCENTS.

A. Problem Formulation

We start by establishing some terminology.
• IoT node d: a device capable of sensing and wireless

communication. We indicate a neighborhood as d1, . . . , dn.
• Context type s: a type of context a sensor provides (e.g.,

location). Each node di provides Si ⊆ S; the complete set
of context types, S = {s1, . . . , sm}, is known a priori.

• Sensing energy cost e: the value ek is an averaged energy
cost for sensing type sk.

• Link stability li,j(t): how stable the link between di and dj
is at time t; li,j ∈ [0, 1].

• Device sensing cost Ei: node di’s energy cost of sensing.
• Energy capability capi: denotes to the energy capability of
di. It is either di’s battery capacity or∞, if di is hardwired.
We now define the problem of dynamic collaborative sens-

ing, using two metrics. The Fulfillment Ratio is defined as:

FR =
Number of queries that receive a valid response

Number of queries generated
(1)

The Unfairness of Energy Consumption metric captures the
difference between the normalized energy consumption of
different devices.

UEC = max(i,j)∈{n×n}

(∣∣∣∣ Eicapi
− Ej

capj

∣∣∣∣) (2)

PROBLEM (DYNAMIC COLLABORATIVE SENSING): A set of
nodes D = {d1, d2, . . . dn} with heterogeneous sensors (Si ⊆
{s1, . . . , sm}) move in a shared physical space. Each di ∈
D hosts one or more applications that periodically generate
sensing queries. For each query qi(t), the node di must decide
the best node (either itself or a neighbor) to fulfill the query
such that: for a given time period T , (1) as many queries
as possible are answered, i.e., FR is maximized; and (2) the
unfairness of the normalized sensing cost of the participants
is minimized, i.e., UEC is minimized.

Most sensed context that SCENTS targets, e.g., attributes
of the ambient environment, can be made public without
privacy concerns. Other data may be sensitive or could lead
to privacy breaches through context inference. Previous study
shows sharing these data only with people in close proximity
raises fewer concerns [41]. Also, efforts exist to protect sensed
data through encryption [42] and obfuscation [25]. SCENTS
remains useful even considering only ambient context that
is not privacy sensitive, including sensing that a device can
delegate to a nearby device for cost reasons.

B. System Overview

As shown in Fig. 1, SCENTS sits between applications and
the device hardware and has two primary components: the
neighborhood agent and the collaboration agent. The former
continuously detects arriving and departing neighbor devices
using beacons. The latter intercepts applications’ queries,
selects and invokes the best approach to satisfy a query, and
delivers data back to applications. It sends sensing requests
by updating the beacon content of the neighborhood agent
and receives sensing responses when the neighborhood agent
receives fulfillers’ beacons. The best approach to satisfy a
query could be to (1) sense the desired context using local
hardware; (2) return a recent observation; or (3) communicate
with neighboring devices to request and receive context.

C. Neighborhood Agent

When current IoT systems use a remote device for sensing
(e.g., a smartphone using a wearable fitness sensor), the
communication requires a pairing process. Once paired, the
devices enter a “central/peripherals” model, where access
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Fig. 1: SCENTS System Overview.

to a peripheral’s sensing capability is restricted to a single
application (process) at a time. In SCENTS, all devices act as
equals and direct their own behaviors. Any sensing participant
can opportunistically communicate with any peer in range.

To support mobile applications, the neighborhood agent
must quickly adapt to changes in the surrounding network
and its sensing resources. We presume the use of the BLEnd
protocol for continuous neighbor discovery [19]. This protocol
is characterized by a repeating schedule of short beacons and
one longer scanning period that captures beacons from other
nodes. The size of the beacon fixed by the underlying BLE
technology, but only the id of the sender is necessary for
the BLEnd protocol, leaving the remaining beacon payload
unused. The neighborhood agent leverages these unused bits
for sensing exchanges. The most relevant parameter of the
underlying protocol is Λ, the expected maximum latency to
discover a neighbor with high probability; for our purposes, Λ
equates to the expected maximum time for a node to receive
a neighbor’s sensing request, r, or sensing response, p.

The neighborhood agent must also detect node departures.
When di receives a beacon from dj , the neighborhood agent
infers the distance between di and dj from the received signal
strength (RSS) value PRx,i. We use the log distance path loss
model [7], [15] to estimate distance from RSS:

PL(dBm) = PTx ,j −PRx ,i = PL0 + 10 · γ · log(ai,j/a0) +X (3)

where PL is the path loss signal strength, ai,j is the distance
between di and dj , γ is the path loss exponent, X denotes a
zero-mean Gaussian variable caused by flat fading, and PL0 is
the path loss signal strength at reference distance a0. Node di
creates a distance queue, Aj , to keep time-stamped distances
from di to dj based on recently received radio frames. The
neighborhood agent computes the (relative) velocity of dj :

Vj(t) =
dAj
dt

(4)

Using this relative velocity, the neighborhood agent esti-
mates the stability of dj relative to a sensing task using the
safe distance [17] to determine how likely dj is to move out
of range before the sensing request and response complete.
We denote the estimated communication range of dj as Rj ,
calculated using equation 3. If di and dj have different

transmission ranges, di can still calculate the communication
range of dj at no additional cost1. Because SCENTS requires
bidirectional communication, the neighborhood agents at di
and dj use the minimum of the two ranges. The neighborhood
agent computes a smaller range, rth(t), that accounts for
the times to send, receive, and respond to a sensing request,
relying on the worst case delay in each direction (i.e., Λ):

rthj (t) = R− Λ · |Vj(t)| (5)

We use a logistic function to model the fact that the
computed stability of a sensing partner decreases as the two
nodes move away from each other:

lj(t) =
1

1 + e
1
10
·(ai,j−

rth
j

(t)

2
)

(6)

where lj(t) is node di’s stability value for dj at time t.
The neighborhood agent later uses stability to compute

whether a neighbor makes a good collaborating partner. To
account for the potential change in lj(t) over time, we compute
Lj(t

′), the aged stability of dj at time t′ . The aging factor
uses an exponential decay; the exponential decay constant Λ
is the maximum latency used above:

Lj(t
′) = lj(t) · e−Λ(t′−t) (7)

The neighborhood agent receives beacons, computes stabil-
ity values, and passes beacon contents on to the collaboration
agent, which is SCENTS’s decision-making process.

D. Collaboration Agent

The collaboration agent has three main components: a query
interface, a neighbor cache, and a decision process.

Query Interface. Interactions with the collaboration layer
are driven by queries created by application; applications
remain agnostic to how or where context is sensed. The
interface contains a query method that takes a context type sk
and a handle to a callback to be invoked when the context is
ready. The collaboration agent maintains a local view of nodes
in proximity, building and maintaining a neighbor cache over
time using information from the neighborhood agent.

Neighbor Cache. In the neighborhood agent’s schedule of
scanning and beaconing, the default beacon content is a bitmap
indicating the on-board sensors. That is, dj’s beacon contains
a compressed vector of its capabilities, Sj , in which each bit
uniquely identifies a type of context. The collaboration agent
logically maintains a matrix C ∈ Bn×m in which bit Cjk

denotes whether dj is capable of sensing sk. This matrix is
updated whenever the neighborhood agent receives a beacon.

The neighbor cache also learns from the content of received
beacons. If the beacon contains a response directed from dj
to this node, then the node delivers the data to the application.
The neighbor cache also stores received context values in case
they are useful for another application in the near future.
It creates an entry 〈sk, value, t〉 ∈ Store, where sk is the
type, value is the measured value, and t is the time of the
measurement. Expired entries are eliminated periodically given
a mapping of type sk to the expected duration of its validity.

1For instance, TxPower field in the BLE extended header.
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ALGORITHM 1: Sensing candidate selection algorithm

1 Function SELECTCANDIDATE: query q(t), α
2 sk ← q(t)

3 Lj(t)← lj(t
′) · e−Λ(t−t′) for j = 1 . . . n

4 construct w ∈ Rn s.t. wk ←
∑n

j=0 ¬Cjk·Lj(t)

n
, k = 1 . . .m

5 construct D ∈ Rm×m s.t. Dkk = wk, for k = 1 . . .m
6 H ← CD ∈ Rn×m

7 H̃ ← row normalize H //each H̃j,: is a probability vector
8 y = fα(H̃:,k, E) //affine combination
9 return ∃dj .yj > 0 ∧ yj = min(y)

10 end

The beacon could also contain a sensing request for di. The
node first checks its local Store for a valid sample; if it finds
one, it sends the cached value as a reused value. Otherwise, di
samples the requested sensor, sends a response, and updates
the Store with the new reading.

Finally, if the beacon contains a response for a node other
than di, the content is still used to update di’s Store if the
value is newly sensed, i.e., not marked as reused. This allows
di to cache sensor readings for future application requests. In
addition, the collaboration agent monitors the estimated energy
expenditure for sensing on nearby nodes. If a received beacon
indicates that dj recently sensed sk, then di updates its local
estimate of dj’s energy expenditure by updating a vector Ej ∈
Rn to be Ej +ek. Over time, di’s estimate of Ej accumulates
the energy cost of dj’s sensing actions that di observes.

Decision Process. The final obligation of the collaboration
agent is to resolve local application queries. When the col-
laboration agent receives a query q(t) for type sk, it checks
the Store to see if a valid reading exists. If so, the query is
fulfilled immediately. Otherwise, it determines the best way to
use sensing resources in the vicinity to satisfy the query using
the following guidelines:
• If the best node to answer the query is the local node,

the collaboration agent requests the value from the local
sensor. It also creates an artificial response hat it passes to
the neighborhood agent to insert in the outgoing beacon for
the next Λ time. This proactively shares sensed context.

• If the best node to answer the query is neighbor dj , the
collaboration agent creates places a sensing request, r in the
outgoing beacon for Λ time. When dj receives r, it responds
as described above. All other neighbors that receive r use
the contained information to update C.
Our algorithm relies on the neighbor cache (i.e., Cn×m,

En, and Ln×2), the query, and a parameter α ∈ [0, 1] that
represents local dynamics (i.e., the rate of change in links to
neighbors). Algorithm 1 attempts to maximize the Fulfillment
Ratio (FR) while evenly distributing energy costs (i.e., mini-
mizing the UEC metric). Line 2 pulls the desired context type
from the query. Line 3 computes the time-decayed stability for
each neighbor using Equation 7. Next, the algorithm computes
the rarity of the each type. Line 4 computes a vector, w, in
which wk combines the existence of a sensing capability on
a neighbor with the link stability, then divides this by the
total number of neighbors. Lines 5 through 7 transform the

TABLE I: Power consumption
Operation Power (mW)
Idle 0.05387
Scanning 16.86997
Beaconing 3.49649
GPS locating 95.34249
Humidity 1.87975
Air pressure/altitude 2.39284
Air quality (VOCs) 0.14427
Motion 6.74112
Color and light intensity 7.55269
Temperature 4.44521

sensor availability matrix Cn×m into a local view of sensing
preferences H̃ , in which H̃jk indicates how suitable dj is for
sensing sk, from di’s perspective. The intuition is to avoid
assigning a widely available sensing task sk to a node that is
capable of sensing some other rarer context type. The set of
〈H̃:,k, E〉 gives a partially ordered list of preferences for the
capable sensing nodes. Our algorithm then applies an affine
mapping function (Line 8) to generate a total ordering of these
pairs. The optimal candidate is given by the infimum of the set
of 〈H̃:,k, E〉 pairs (Line 9), which gives the positive minimum
in the mapped outcome, if it exists.

IV. EXPERIMENTAL EVALUATION

A. IoT Device Power Profiling

We first profile the capabilities of an off-the-shelf IoT
device: the Nordic Thingy 52 sensor kit [30]. This multi-sensor
lightweight device is equipped with BLE and powered by a
rechargeable Li-Po battery with a capacity of 1440 mAh. The
Thingy allows fine-grained control over BLE beaconing and
scanning, which is required by continuous neighbor discovery.
We extended the on-board sensors with an external GPS
module [2]. We used this setup to create a power consumption
model for the Thingy using a profiling program that executes
a series of operations (i.e., transmitting beacons, scanning
advertising channels, and sampling sensors).

We sampled the current at 10KHz using an Infiniium
DSO9404A oscilloscope, then reconstructed the current mea-
surements into pairs of power and device behavior. Table I
shows the measurement results. The first row (Idle) is the
power consumption when the Thingy is battery-powered but
inactive (i.e., radio and all sensors are disabled). We then
sample different operations’ consumption in isolation.

B. System Implementation

To evaluate SCENTS, we built a street-level simulated
world, including heterogeneous and dynamic sensing re-
sources. The core of our simulation is the OMNeT++ v.5.4.1
discrete event simulator [39]. The wireless physical and MAC
layers are based on the INET Framework v.4.0 [18]. Geo-
graphic coordinates and 3D physical obstacles rely on Open
Scene Graph [31] and Open Street Map [32]. Algorithm 1 is
implemented using the Eigen3 template library [14].

Simulated IoT devices use the device profile above, in-
cluding multiple sensors, low-radio duty cycle, and short-
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range device-to-device communication. The available sensors
include all the sensors in the Thingy52, plus a position sensor.

For the link layer, we modified INET’s IEEE802.15.4 nar-
row band beacon operation. In particular, the node mimics
BLE beaconing by adding a random slack to the beacon
intervals. Within this networking framework, we implemented
the BLEnd protocol [19], with which our neighborhood agent
interfaces to send and receive beacons. Fig. 2 shows the
structure of a SCENTS beacon, which fits in the 31 byte
payload of a BLE advertisement. The first three bytes are used
for required identity information for neighbor discovery. Each
beacon also contains the node’s sensing capabilities (4 bytes),
followed by exchange segments, which encapsulate sensing
requests and responses. Each exchange segment contains the
source and destination ids (each 1 byte), the context type
(5 bits) and a context value (4 bytes). Some context types
have values larger than 4 bytes (e.g., GPS readings); SCENTS
supports an extended exchange segment of up to 8 bytes.

C. Scenarios

We use three realistic and parameterizable real-world sce-
narios for our evaluation2:
Fleet: a set of IoT devices are carried by a group of people

(whose size may vary). The group members have nearly
identical trajectories.

Commuters: a set of devices follow partially overlapped tra-
jectories. A subset move toward the same destination along
partially different paths. The remaining share the trajectory
at the start then diverge to a different destination.

Individual: a user carrying an IoT device moves through a
smart space with embedded sensing resources.

D. Collaboration Analysis

Our first experiments evaluate the effectiveness of collab-
oratively sharing the sensing task. Specifically: (1) Does col-
laboration mitigate missing sensing capabilities using proximal

2https://github.com/UT-MPC/collab-sensing-simulation

sensing resources? (2) How are sensing queries resolved (i.e.,
individually or collaboratively), and how do distributions of
capabilities across devices impact performance?

We compare our algorithm with two naı̈ve strategies. In the
independent strategy, each device fends for itself, answering
queries only with on-board sensing capabilities. In the ran-
dom strategy, nodes randomly choose a capable neighbor to
collaborate. The results we report use six nodes in the Fleet
scenario. We vary sensing capabilities by assigning each node
a random subset of sensors; the size (r) of the subset varies
from 20% of the available types up to 100%. Each node hosts
an application that randomly generates a query every 10s. Each
simulation lasts for 850s, and we repeat each experiment five
times with different random seeds. Each query can result in
one of the five states:
• RS1 (cached reading): query fulfilled by a cached value
• RS2 (answered request): query fulfilled by an answered

sensing request
• RS3 (self-sensing): query fulfilled by local sensors.
• RS4 (failure: no response): unanswered sensing request
• RS5 (failure: no capability): lack of required sensor in the

neighborhood
In Fig. 3, each bar is the summed for all runs of each

setting. The settings are grouped first by the fraction of
capabilities allocated to each node, then by strategy. The
differences between the individual and both the random and
optimized (i.e., SCENTS) strategies highlight the benefits of
collaboration. By leveraging the heterogeneous capabilities in
proximity, significantly many more application queries can
be satisfied. As r increases, slightly more requests can be
satisfied by cached values when using algorithm 1 than random
selection, reducing the energy cost of sensing in the local
network neighborhood.

To further evaluate SCENTS’s performance when devices
have heterogeneous capabilities, we use the same scenario
but with 10 nodes and a wider range of capability settings.
This time we analyze the Fulfillment Ratio metric from Equa-
tion 1. We generated the configurations by iterating over
two parameters. The first, o, captures the fraction of nodes
that are fully capable, i.e., can directly sense all context
types. The second parameter, r, is the same random ratio as
above. We vary the interval of each node generating sensing
queries between 5s (the same as Λ) and 10s. These parameters
generate 242 different configurations; we repeat each run three
times. Fig. 4 shows the results. Except in the extreme case
(when o = 0 and r = 0, i.e., there are no sensing capabilities
in the neighborhood), the Fulfillment Ratio climbs quickly as
either parameter increases. Over 63% and 79% of queries are
satisfied with the help of collaboration (in o = 10%, r = 0
and o = 0 r = 10% cases).

E. Quality-of-Service Analysis

We next assess SCENTS’s quality-of-service (QoS) under
increased dynamics in the neighborhood’s sensing resources:
(1) How adaptive is SCENTS to realistic dynamics in a smart
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city IoT scenario? (2) To what extent is sensing quality traded
for increased capability and reduced energy consumption?

We use the Commuters scenario3 with 10 devices that follow
different yet overlapping trajectories; six start and end at
the same locations and deviate in the middle; the remaining
devices start with the others but head to a different destination.

We assess the faithfulness of SCENTS in sensing a device’s
position when the simulated devices collaborate. We compute
the freshness of sensed values and their error from the ground
truth. We define Freshness (F) to be the time that elapses
between sensing and delivering a query response and the Error
(E) to be the magnitude of the difference between the sensed
value and the ground truth. We varied the interval between
queries using a parameter θ. In particular, node di receives one
sample for each desired context type within the time window
θ×Λ. Smaller values of Λ are associated with higher sampling
frequencies and therefore higher total energy costs for sensing.
We repeat each experiment five times, resulting in a total of
17729 queries for each setting.

In Fig. 5a each box shows quartiles of freshness in seconds,
while the whiskers extend to show the distribution. The dashed
line marks the maximum discovery latency Λ (5s). Most
queries are nearly as fresh as Λ, meaning the parameters
of neighbor discovery dominate delays in receiving sensed
values. The medians are above Λ but within 15%. While
motion related context types (e.g., orientation) may be affected
by this freshness, the majority of context types (e.g., humidity)
do not vary at the second scale in the nearby physical world.

Next, we evaluate the error caused by sensing delay. Fig. 5b
depicts the kernel density estimation of the errors (in meters)
for varying sensing frequencies. The majority of errors are less
than 10 meters. The median errors are all less than 5 meters.
SCENTS tends to choose nearby resources to collaborate with,
and these resources are likely to have context values close to
the ground truth since the context types are spatially correlated.
Errors do not increase as query frequency changes.

As our goal is to maximize query fulfillment while evenly
distributing energy costs of sensing, we measure the distribu-
tion of E values and the UEC from Equation 2. Fig. 6 shows
these values for the Fleet scenario with 10 nodes for both
the individual strategy (blue) and SCENTS (orange). We first
compute the average power consumption per second for each

3https://youtu.be/KPqtK9t2efs
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node, then average over all runs. Not only does collaboration
save substantial energy across all values of θ, but the burden of
context sensing is more evenly distributed (as indicated by the
tighter box and whisker plots for SCENTS). However, there
is still some variance, especially at high query frequencies,
indicating that refining the way Algorithm 1 considers the
energy costs of collaborative sensing is an area for future work.

F. Energy cost Analysis

Our final experiments analyze the energy savings of col-
laborative sensing. We use the Individual scenario, a smart
city with situated environmental sensing beacons. Such devices
commonly have a power source that frees them from worry
about energy costs. In the experiments, the stationary nodes are
placed randomly in the smart city space; we vary the density
of stationary nodes as the number of devices per 100m2. The
SCENTS layer used on these devices is otherwise the same as
described previously. The mobile device is fully capable and
hosts an application that queries a randomly selected context
type every 10s. We measure the energy savings afforded the
mobile device from collaboration with the stationary sensors.

Figure 7 shows the energy consumption, comparing a mo-
bile device using only on-board sensors to fulfill queries (the
backing gray bar) to the energy consumption when employing
SCENTS. In each bar, the orange depicts the energy spent on
sensing, while the blue depicts energy spent on communica-
tion. We compute the average power consumption per second
for each node, then average over all nodes. Starting from a
density of one device per 100m2, the user node receives a
significant benefit from collaborative sensing and fulfills its
sensing demands with 70% power savings.
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V. CONCLUSION AND FUTURE WORK

We demonstrated the practical benefits of collaboratively
sensing context in highly dynamic IoT environments. SCENTS
leverages the context sensing capabilities of opportunisti-
cally encountered devices in a non-intrusive manner. Because
SCENTS encapsulates access to both local and remote sensors,
individual sensors are no longer tied to specific applications
or application schedules, allowing much more flexibility in
utilizing IoT sensing resources.

Future work could improve the use of collaborative sensing
even more. For instance, the faithfulness of a context response
could be validated using multi-party computation. A feedback
mechanism can be integrated to guide the sensor selection
strategy thus improve the QoS of SCENTS in proximity
networks. The context types we share are mostly ambient
environmental sensor readings. Secure multi-party aggregation
could support more types of context sharing. For instance,
many people might consider accelerometer data to be par-
ticularly private, however, if securely aggregated, one could
acquire fused views of the context from a multi-device view
and expose less sensitive information.
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