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Abstract—Traffic analysis attacks allow an attacker to infer
sensitive information about users by analyzing network traffic of
user devices. These attacks are passive in nature and are difficult
to detect. In this paper, we demonstrate that an adversary,
with access to upstream traffic from a smart home network,
can identify the device types and user interactions with IoT
devices, with significant confidence. These attacks are practical
even when device traffic is encrypted because they only utilize
statistical properties, such as traffic rates, for analysis. In order
to mitigate the privacy implications of traffic analysis attacks,
we propose a traffic morphing technique, which shapes network
traffic thus making it more difficult to identify IoT devices and
their activities. Our evaluation shows that the proposed technique
provides protection against traffic analysis attacks and prevent
privacy leakages for smart home users.

I. INTRODUCTION

Internet of Things (IoT) revolutionizes our every day living
by bringing automation and connectivity to our immediate
surroundings. IoT has recently seen tremendous growth and
consumer markets are flooded with Internet-connected “smart-
devices”, ranging from smart plugs to smart refrigerators.

IoT devices require network connectivity even for their
basic operations. Research has shown that Internet-connected
devices may fail to perform their core function in the absence
of network connectivity [1]. This is because very often IoT
devices follow an architecture where a large part of device
functionality, including the user interface for device configu-
ration, is provided by a cloud service. Thus, even very trivial
interactions with an IoT device, such as switching on a smart-
plug, may cause network traffic to be sent to the cloud.

The traffic stream for any IoT device can be divided in
two sub-streams, representing background and activity traffic.
The background traffic stream contains the communications
exchanged between the IoT device and the cloud service
when no activity is happening at the IoT device. This stream
generally includes keep-alive messages and similar status
probes, with low traffic rates. Activity data stream, on the other
hand, contains the communications exchanged between an IoT
device and cloud services about some activity. The source of
such an activity could be a direct user interaction with the IoT
device or some change in the surrounding environments which
the IoT device is sensing. The activity stream generally has
significantly higher traffic rates compared to the background
traffic stream.

Usually, network traffic of an IoT device exhibits unique
patterns due to different design choices, implementation de-
tails, and back-end solutions. An adversary, with access to
upstream traffic from a smart home, can study these patterns
to identify the type and state of IoT devices generating given
traffic flow [2]–[4]. Any information about the type and state
of an IoT device can be used to infer online and offline
activities of its users [5]–[7]. For example, information about
network traffic generated by smart lights can be used to deduce
whether there is anyone at home or not. The attacks performed
by analyzing network traffic, to identify IoT devices and their
activity, can be referred as traffic analysis attacks. These
attacks are passive in nature and therefore difficult to detect
and mitigate.

In this paper, we consider two commonly observed traffic
analysis attacks against IoT devices, i.e. device identification
and activity recognition. We demonstrate that an adversary
can perform these types of attacks using only the metadata
information extracted from IoT devices’ network traffic. This
metadata information includes DNS queries, connection infor-
mation and statistical properties of network traffic flows.

We have observed that majority of commercially available
IoT devices use secure communication protocols (e.g. TLS)
for data encryption. However, encryption does not hide the
statistical properties of network traffic, such as traffic rates.
Therefore, it is possible to perform the aforementioned traffic
analysis attacks, even when network traffic is encrypted.

In order to limit the feasibility of traffic analysis attacks
against IoT devices, this paper presents a traffic morphing
technique to hide real device traffic from a passive observer
snooping on the upstream link of a smart home network. For
this purpose, we mask background traffic from IoT devices to
prevent the adversary from identifying device-specific patterns
in network traffic, and send dummy traffic during the periods
an IoT device is inactive, to hide the actual traffic generated
due to device activity. Since the dummy traffic only differs
slightly from real network traffic in terms of statistical proper-
ties, it prevents the adversary from distinguishing real device
traffic to perform any attacks. Our results demonstrate that
the proposed traffic morphing technique successfully limits
the performance of machine learning techniques employed for
conducting traffic analysis attacks.

The key contributions of this work can be summarized as:
• We demonstrate the feasibility of traffic analysis attacks
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for device identification and activity recognition, using
only statistical properties of network traffic.

• We propose a traffic morphing technique, which hides
background and activity traffic of IoT devices, such that
a network observer can not identify IoT devices and their
activities.

• We demonstrate that our traffic morphing technique can
prevent traffic analysis attacks against user privacy, with-
out affecting functionality of IoT devices.

II. RELATED WORK

Analyzing encrypted traffic to identify user actions is a well-
studied problem [7]–[9]. Traffic analysis attacks have been
used for tracking online users, detecting smartphone usage
and activities etc. [7]. Recently, a number of techniques have
been proposed for IoT device identification. These techniques
mainly rely on extracting fingerprints from network traffic
generated by IoT devices, and using them to identify the
type of IoT devices [3], [10], [11]. Research has shown
that it is also possible to identify IoT devices, exhibiting
malicious activity, by analyzing their network traffic [4], [12],
[13]. Such anomaly detection techniques use fingerprints of
normal network behavior for IoT device(s) to detect malicious
activities [14].

Traffic shaping has been previously used as a counter-
measure against traffic analysis attacks [15]–[17]. Previously,
Guan et al. [18] proposed traffic shaping by scheduling pay-
load transmissions such that the security requirements are
handled without affecting real time requirements of traffic.
Acar et al. [19] proposed the use of spoofed traffic, to prevent
identification of IoT devices by analyzing their network traffic.
However, they do not discuss overhead costs of sending
spoofed traffic and its impact on IoT device functionality.
Apthorpe et al. proposed constant rate traffic shaping technique
to mitigate traffic analysis attacks [1]. Although constant rate
traffic shaping restricts an adversary from inferring device
state, it incurs significant bandwidth overhead. Meanwhile, any
increase in latency, to limit overhead bandwidth consumption,
limits device functionality.

III. ADVERSARY MODEL

In this work, the victim’s network is a typical home network
with a star topology, where IoT devices are connected to a
gateway that provides Internet access. We consider a passive
adversary who is able to monitor up- and downstream traffic
of the victim’s network, as shown in Fig. 1. The adversary
could be, for example, the victim’s ISP or anyone who has
access to network traffic between the victim’s gateway and
Internet. The goal of the adversary is to learn user’s activities
from the traffic that is generated by the IoT devices. We only
consider passive attacks – while the adversary might be able to
learn additional information by actively probing the victim’s
network, such attacks are not considered.

Many IoT devices use secure communication protocols to
secure network traffic. Therefore, in the given scenario, the
adversary can only use traffic metadata for the attacks. This

Home 

gateway

Fig. 1. Smart home testbed network, where an adversary can observe all
traffic to- and from smart home network.

work assumes a closed-world setting where the adversary has
access to labeled traffic traces of all IoT devices found in
the victim’s network. The adversary uses these traces to train
its machine learning models and there is no upper bound
on resources available for this purpose. We also assume that
the adversary has full knowledge about traffic morphing and
shaping that is being performed at the gateway, and that the
adversary can use this information in training the machine
learning models.

IV. TESTBED

Our testbed setup represents a smart home environment,
with commercially available IoT devices such as IoT security
cameras, smart plugs, air quality monitors and other sensors.

The testbed uses a Raspberry-PI 3 setup as a wireless access
point for connecting user devices. Raspberry-PI also serves as
the smart home gateway with upstream connectivity to the
Internet. It performs network address translation, runs DNS
and DHCP services for LAN network. All IoT devices are
setup from factory-default state and device state changes are
triggered by explicit user actions. To mimic an adversary, we
record all traffic entering and leaving the smart home network
by running tcpdump on uplink ethernet interface.

Table I lists the IoT devices used in our testbed, including
Google Nest Security Camera (Nest Cam), D-Link WiFi
Day/Night Camera (D/N Cam), D-Link Home Siren (Home
Siren), Belkin WeMo Insight Smart Plug (Insight Switch),
EyePlus Baby Monitor HD camera (Baby Cam), Nokia Video
and Air Quality Monitor (VAQM). These devices are represen-
tative of the most commonly deployed IoT devices in smart
homes [20].

The features supported by IoT cameras include HD video
streaming, night vision monitoring, motion and sound de-
tection, and two-way audio streaming. Meanwhile, Home
Siren and Insight Switch offer basic features such as on/off
and changing device settings. None of these devices have a
physical user interface, except for Insight Switch which has
a power button. All devices are controlled by a smartphone
application provided by the manufacturer.

For data collection, a set of scenarios was drafted based
on interactions available for each of the devices and data
collection was performed three times for each scenario. Due to
limited set of actions supported by these IoT devices, only few
scenarios can capture majority of possible user interactions.
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TABLE I
IOT DEVICES USED IN SMART HOME TESTBED ENVIRONMENT. MD:

MOTION DETECTION, NV: NIGHT VISION, A/V STREAMING:
AUDIO/VIDEO STREAMING

Device Type Manufacturer Activity Firmware

Nest
Cam

Camera Nest Labs A/V streaming,
MD, NV

217-
610040

Home
Siren

Sensor DLink On/Off, Settings 1.22

Baby
Cam

Camera Uniojo A/V streaming,
MD, NV

3.1.1.0908

Insight
Switch

Smart
plug

Wemo On/Off, Report-
ing

D/N
Cam

Camera DLink A/V streaming,
MD, NV

v2.12-
7221

VAQM Camera,
Sensor

Nokia A/V streaming,
MD, NV, sensing

712

Every time the IoT device was individually set up, all incoming
and outgoing traffic was collected at the edge gateway. User
interactions were performed by a researcher mimicking normal
user interactions, in real time. Background traffic was collected
by setting up the IoT device and leaving it in operation
for several hours. No user interaction took place during this
time. After every data collection exercise, the whole testbed
including all devices was reset to default state.

We use two commonly used supervised machine learn-
ing algorithms, Random Forest (RF) and k-Nearest Neigh-
bors (kNN), for device identification and activity recognition
problems. These algorithms were implemented using Python.
We use four fold cross-validation to study the classification
performance in terms of precision, recall and F1 score. Four
fold cross-validation prevents over-fitting by performing four
iterations of training and testing with 25% of data used for
hold-out validation in each iteration. For traffic morphing,
dummy traffic is generated using dpkt and other python
libraries and traffic rate limiting is performed using Linux
kernel traffic control utility.

V. TRAFFIC ANALYSIS ATTACKS

This section discusses how an adversary can infer in-
formation about the type and activity of IoT devices, by
analyzing their network traffic metadata only. This work does
not aim to develop an extensive device identification or activity
recognition technique. Instead, we present proof of concept
work to demonstrate the feasibility of traffic analysis attacks,
even when network traffic is encrypted.

A. DNS Queries

During normal operation, IoT devices typically commu-
nicate with a handful of cloud services only. These cloud
services can be associated to device manufacturers and device
types. An adversary can use organizationally unique identifier
(OUI) in device MAC address and the DNS queries, extracted
from network traffic, to successfully identify the type and
manufacturer of IoT devices deployed in victims’ smart home.
The additional information about the type and manufacturer of

TABLE II
DNS QUERIES MADE BY IOT DEVICES

Device DNS queries

Nest
Cam

nexus.dropcam.com, pool.ntp.org, nexus-eu1.dropcam.com,
oculus255-eu1.dropcam.com

Home
Siren

wrpd.dlink.com, api.dch.dlink.com, ntp1.dlink.com, tzinfo.
dch.dlink.com

Baby
Cam

esd.icloseli.com, xmpp.icloseli.com, stun.arcsoftcloud.com,
relayeu.arcsoftcloud.com, relayjp.arcsoftcloud.com,
relayus-w.arcsoftcloud.com

Insight
Switch

time.stdtime.gov.tw, nat.xbcs.net, api.xbcs.net

D/N
Cam

signal.auto.mydlink.com, ntp1.dlink.com, mp-eu-signal.
auto.mydlink.com

VAQM scalews.withings.net, xmpp.withings.net, xmpp.withings.net,
prod-ireland-timeline-2-days.s3.amazonaws.com

an IoT device can significantly help the adversary to identify
user interactions with the device.

We analyzed the DNS queries made by the IoT devices used
in our testbed. Table II shows that, in most cases, these queries
can be mapped to specific device types and manufacturers. It
can also be observed that all devices query more than one
domains and the set of domains is unique for each device
and manufacturer, for example, D-Link Camera and Home
Siren both make DNS queries to ntp1.dlink.com, however, the
complete set of domains contacted by each device is unique
for the particular device.

We also noticed that most manufacturers used third party
cloud hosting services for deploying their IoT cloud services.
In our analysis, three out of six devices used Amazon AWS
cloud hosting platform, one used Alibaba cloud. Only one
(Google Nest Cam) out of six devices used first party cloud
services. We expect similar trend for other IoT devices as
well, with most manufacturers using third party cloud hosting
platforms for deploying cloud services.

B. Statistical Features

In this work, we restrict our traffic analysis techniques to
only use statistical properties of network traffic, because in
real world scenario, an adversary only has access to these
features, due to encrypted communications. We study the
network traffic flows of IoT devices as an ordered sequence of
packets exchanged between IoT devices and their respective
cloud services and isolate the traffic flows corresponding to
each device as a time series of packets exchanged during
that flow. We record packet sizes, inter-arrival delay, and
direction (incoming/outgoing) for each of the packets in given
traffic flow. The resulting vectors are divided into n windows,
with each window of size w. The feature set extracted from
each window includes average and mean absolute standard
deviation for packet size, packet rate, inter-arrival delay and
traffic rate and this feature is used for both device type
identification and activity recognition problems.

The feature set discussed here is protocol agnostic, there-
fore, it can be used to analyze ZigBee and BLE communica-
tions. The optimal value for w varies with problem scenario,
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TABLE III
DEVICE TYPE RECOGNITION

Random Forest k Nearest Neighbors
Device Name Precision Recall F1

Score
Precision Recall F1

Score

Nest Cam 0.87 0.86 0.87 0.89 0.87 0.88
Home Siren 0.88 0.9 0.89 0.88 0.93 0.9
Baby Cam 0.91 0.86 0.88 0.88 0.84 0.86
VAQM 0.84 0.85 0.85 0.83 0.77 0.8
Insight Switch 0.94 0.88 0.91 0.89 0.88 0.89
D/N Cam 0.86 0.78 0.82 0.87 0.81 0.84

for example, activity recognition problem uses smaller w in
comparison of device identification problem because network
footprint of IoT device activities is short-lived and a larger
w will smoothen any spikes in traffic rates indicating device
activity. Meanwhile, it should be noted that smaller w improve
the performance of classification techniques upto a certain
limit only. Beyond this limit, reducing w will negatively affect
the performance of classifier in use. Our analysis showed
that optimal window size for device identification and activity
recognition problem is w = 10sec and w = 2sec, respectively.

C. Device-Type Identification

Table III shows that RF and kNN classifiers achieved
an average accuracy of 87% and 86%, respectively, for the
IoT device identification problem. These results show that
it is feasible for an adversary to identify IoT devices, with
high accuracy, using only the statistical properties of network
traffic. We observed that IoT cameras had different network
traffic footprint due to difference in their implementation
details such as video compression, media encoding techniques,
which helped in achieving higher accuracy for differentiating
between different IoT cameras. Meanwhile, Home Siren and
Insight Switch support limited functionality (turned on or off)
and infrequent variations in traffic rates resulting in a few false
positives for these two devices.

Most low power IoT devices use protocols such as ZigBee,
BLE to communicate with IoT hubs. These IoT hubs commu-
nicate with cloud services using traditional wired or wireless
network and the adversary can identify the communications
between IoT hubs and cloud services. Given that most low
power devices use manufacturer specific IoT hubs, the adver-
sary can infer the type of IoT devices using these IoT hubs.

D. Device Activity Recognition

Due to lack of physical user interfaces, most user interac-
tions with an IoT device typically happen via a smart-phone
application. When the user interacts with the smart-phone
application, it sends the commands to the IoT device either
directly or via cloud service. In either case, the interaction
results in additional network communication observable by the
adversary, who can identify the interaction by analyzing the
statistics of given traffic stream.

Table IV shows that the best performance for activity
recognition was achieved for Home Siren and Insight Switch,

TABLE IV
DEVICE ACTIVITY RECOGNITION

Random Forest k Nearest Neighbors
Device Name Precision Recall F1

Score
Precision Recall F1

Score

Nest Cam 0.82 0.85 0.83 0.85 0.89 0.87
Home Siren 0.9 0.96 0.93 0.93 0.96 0.95
Baby Cam 0.82 0.85 0.83 0.88 0.85 0.87
VAQM 0.85 0.92 0.88 0.89 0.92 0.91
Insight switch 0.9 0.93 0.92 0.9 0.9 0.9
D/N Cam 0.93 0.89 0.92 0.90 0.93 0.92

which can be attributed to the limited set of actions (on/off)
available for these two devices. In case of IoT cameras, the
best performance is achieved for D/N camera because this
camera does not send video feed to cloud service when the
user is not streaming video feed to their mobile or desktop
client. Meanwhile, other cameras continuously send video
feed to cloud services, irrespective of whether or not user
is streaming video to their client devices. We also observed
that the difference in traffic rates, due to different encoding
techniques used by IoT cameras and variation in traffic rates
when motion or sound is detected, significantly helps in
identifying user interaction with connected cameras.

The results presented in Tab. III and Tab. IV can be further
improved by adjusting w, updating classification techniques
and using additional features. However, based on current
results, it can be established that traffic encryption does not
protect user privacy against traffic analysis attacks.

VI. TRAFFIC MORPHING

In order to limit the ability of an adversary to compromise
user privacy using traffic analysis attacks, we propose a traffic
morphing technique. Our proposed technique masks real traffic
from IoT devices in such a way that an adversary is not able to
distinguish between real and dummy traffic, thereby, limiting
its ability to perform aforementioned traffic analysis attacks
and compromise user privacy. We assume that the adversary
knows about traffic morphing being performed at the home
gateway, therefore, the statistical properties of dummy traffic
should be almost identical to real IoT traffic, so that the
adversary can not distinguish between real and dummy traffic.
To address this requirement, we generate dummy traffic using
real traffic captured from IoT devices.

To generate the dummy traffic, we collect information
about packet sizes, packet rates, and inter-arrival delay from
real traffic of IoT devices. We also capture the IP-five-tuple
connection information that is used to replay the traffic. We use
real traffic data and cubic-spline interpolation [21], to generate
packet sizes and inter-arrival delays for dummy traffic. Table V
shows that statistical features of dummy traffic are similar (not
exactly identical) to those seen in real background and activity
traffic generated by IoT devices. It can also be observed that
the inter-arrival delay is significantly different for different IoT
devices, as well as it is different for the background (BGr)
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and activity (Ar) traffic. It shows that statistical properties of
traffic reveal significant information about the IoT devices.

In order to mask the background traffic, we send traffic
on upstream link at a constant rate, irrespective of real back-
ground traffic rate of an IoT device. Meanwhile, when an IoT
device is inactive, we send dummy traffic representing device
activity to upstream link, so that an adversary can not identify
real activity of the IoT device. In current design, dummy traffic
follows the same path as real traffic and upon reaching the
destination, it is silently dropped by the destination service.
Any concerns of dummy traffic becoming a denial of service
attack against destination service are discussed in section VII.

For traffic management, we specify traffic rate and queueing
strategy over the uplink ethernet interface of Raspberry PI
using Linux traffic utility. We maintain two separate queues Qr

and Qd for real and dummy traffic, respectively. The traffic for
real and dummy IoT device activity is added to Qr. As soon as
a new packet is available in Qr, it is immediately forwarded to
network driver for transmission. High prioritization of packets
in Qr ensures that there is no additional delay experienced
by real traffic from IoT devices. Meanwhile, background
dummy traffic is stored in Qd. Traffic from this queue is sent
to upstream link only to maintain a constant traffic rate in
scenarios where IoT device is not generating any traffic. It
should be noted that the rate of generation of background
dummy traffic is high enough that there are always enough
packets available in Qd to be sent on upstream link.

To evaluate the proposed traffic morphing technique, we
studied the accuracy achieved for device type identification
and activity recognition problems. We observed that the
performance of both RF and kNN classification techniques
significantly degraded when traffic morphing was applied. For
device identification, we were able to achieve maximum true
positive rate of 21% and 24% for RF and kNN, respectively.
We observed that the best performance for device identification
was achieved for the devices with low traffic rates (i.e. Home
Siren and Insight Switch). We attribute this performance to
small diversity in device set used in testbed setup, that is, if
there are other devices with similar traffic rates, the perfor-
mance will further degrade. Similarly, we only achieved true
positive rate of 12% and 11% using RF and kNN, respectively,
for activity recognition problem.

In summary, when traffic morphing was applied, the perfor-
mance achieved for device identification and activity recog-
nition was worse than random guessing. Therefore, it can be
assumed that traffic morphing limits the ability of an adversary
to perform traffic analysis attacks against IoT devices.

VII. DISCUSSION

Our preliminary results show that the proposed traffic mor-
phing technique provides sufficient protection against traffic
analysis attacks. Any traffic morphing technique sends addi-
tional traffic to hide real traffic, therefore, it consumes some
additional bandwidth. However, the bandwidth consumed by
IoT traffic is fairly small due to limited functionality of IoT
devices. Consequently, the amount of dummy traffic needed

TABLE V
MEAN, IQR AND STANDARD DEVIATION FOR INTER ARRIVAL DELAY (IN
MS) OF REAL (∗r ) AND DUMMY (∗d) TRAFFIC FOR IOT DEVICE ACTIVITY

(A∗) AND BACKGROUND TRAFFIC (BG∗).

Traffic
type

IAD
(BGr)

IAD
(BGd)

IAD
(Ar)

IAD
(Ad)

Nest Cam
Mean 143.2 143.9 8.7 9.1
IQR 14.2 13.9 3.65 3.4
StDev 199.9 202.8 99.1 97.9

Siren
Mean 627.9 628.6 218.3 225.2
IQR 998.2 1001.9 44.07 45.79
StDev 1720.4 1775.4 670.0 657.4

Baby Cam
Mean 7.2 6.9 2.4 3.3
IQR 3.64 3.79 0.25 0.27
StDev 280.5 279.1 230 228.4

VAQM
Mean 5.7 5.6 3.9 3.8
IQR 1.58 1.6 1.9 1.9
StDev 149.1 148.0 31.8 32.2

Insight Switch
Mean 359.9 357.5 119.6 120.0
IQR 1.25 1.2 3.6 3.7
StDev 3854.1 3791.3 1268 1267.8

D/N Cam
Mean 560.2 561.7 2 2.5
IQR 4.8 4.73 1.4 1.3
StDev 567.1 595.0 16 16.3

to mask IoT traffic is also very small. In case of IoT devices
with high bandwidth consumption, such as IoT cameras, the
bandwidth consumed by device activities is only a fraction
of total bandwidth consumed. Since we only replay these
device activities in traffic morphing, the bandwidth overhead
for the proposed traffic morphing technique is fairly limited
and does not incur additional costs even if there are data caps
on bandwidth available to user.

It should also be noted that dummy traffic needed to achieve
constant traffic rate on upstream network is not proportional
to the number of devices in the network. For example, if there
are multiple IoT devices in the network, the volume of dummy
traffic needed to achieve constant traffic rate will be less than
the total volume of dummy traffic needed to mask background
traffic of each device individually. This is because dummy
traffic is used to smoothen any variations in network traffic
which can be attributed to specific devices. In case of more
than one device, we only have to smoothen the variations on
final network flow exiting home gateway.

In extended deployments, the location of deploying traffic
morphing can vary with the location of adversary, for example,
in enterprise environments, traffic morphing can be done at
the network perimeter where other network middleboxes are
deployed. Traffic morphing technique can be employed to
mask traffic from specific devices or specific intervals to limit
the bandwidth overhead, while maximizing privacy of users.

In case an IoT device itself performs traffic morphing, it
will protect the device against any adversaries within the
same network as IoT devices. Meanwhile, if every device
performs traffic morphing individually, it will increase the
overall bandwidth and energy consumption of IoT devices in
smart home network. It will also require significant effort to
integrate traffic morphing logic in IoT devices due to limited
features and support available for IoT device firmware.

Existing constant rate traffic shaping techniques limit the
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additional bandwidth consumption at the cost of increased
latency. However, high latency negatively affects IoT device
functionality because an additional delay in connectivity to
cloud services can render IoT devices non-functional in some
cases. In order to prevent such scenarios, we prioritize real
traffic over dummy traffic to ensure that there is no additional
latency and IoT devices can perform their normal functioning,
as it can be critical e.g. health IoT devices.

In order to prevent dummy traffic from becoming a denial
of service attack against cloud service, dummy traffic can be
sent to a sink hole address instead of real destination service.
However, a clever adversary can use this information to isolate
real traffic and perform traffic analysis attacks. Alternatively,
we can use a special flag in dummy traffic packets to direct
firewall at destination service to drop these packets at network
layer, without any processing. It is also possible to transmit all
real and dummy traffic flows via an encrypted tunnel or virtual
private network (VPN). In such case, the VPN server at the
exit node will be configured to drop all dummy traffic and
only send real traffic to destination cloud services. However,
this approach incurs additional costs of VPN deployment
and maintenance. If only the real traffic from IoT devices is
transmitted via VPN tunnel, the additional layer of encryption
does not provide significant advantage as the adversary can
extract all statistical properties from traffic flows to perform
traffic analysis attacks.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that a passive network
observer can successfully perform traffic analysis attacks, even
when network traffic is fully encrypted. Our results show
that it is possible to identify IoT devices and their activity
with high accuracy, using only the statistical features obtained
from network traffic meta-data information, available to any
passive network observer. Such attacks are a serious threat
to users’ privacy. In order to limit the feasibility of these
attacks, we present a traffic morphing technique. Our technique
uses dummy traffic to mask the real traffic generated by IoT
devices, where dummy traffic is statistically similar to real
IoT traffic, therefore, an adversary is not able to distinguish
between real and dummy traffic. Traffic morphing makes it
difficult for network observer to effectively perform traffic
analysis attacks. This phenomenon has been validated by our
evaluation, which shows significant drop in performance of su-
pervised machine learning algorithms for device identification
and activity recognition.
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