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Abstract—In the Internet of Things (IoT), billions of physical
devices are connected and provide a near real-time state of the
world. By adopting a service-oriented computing paradigm, the
capabilities of these devices (whether mobile or static) can be ab-
stracted as IoT services and delivered to users in a demand-driven
way. Service providers can have a comprehensive competitive
edge by tailoring their services to match users’ requests through
a negotiation process, with the particular service provisioning
specified in a service level agreement (SLA), which can be
further used to monitor and guarantee the quality of service
(QoS). The challenges for SLA negotiation in the IoT include
the scale and the dynamics of the environment. Existing SLA
negotiation approaches are focused on cloud computing, which
do not consider the domain-specific properties of IoT services.
In this paper, we designed a context-based negotiation strategy
to evaluate offers and generate counteroffers, and integrate it
with the WS-Agreement Negotiation standard. The evaluation
results demonstrate that our proposal can produce a higher utility
and maintain a good success rate compared to other negotiation
strategies.

Index Terms—Internet of Things, SLA negotiation, WS-
Agreement, negotiation strategy

I. INTRODUCTION

The Internet of Things (IoT) envisions a large number of
physical objects, connecting over the Internet to provide a near
real-time state of the world. These real-world data and device
capabilities can be abstracted as services [1], and provided
to application tasks on demand to create scalable, adaptable,
and flexible IoT solutions [2]. Based on a pay-as-you-go
model, the same services can be delivered to different users
with different service properties or QoS, by reconfiguring the
services or devices [3]. For mission-critical IoT applications,
“best effort” services are not sufficient [4]. To deliver requested
services with pre-negotiated quality, Service Level Agreements
(SLAs) are widely used as a contract-like concept to assure
obligations and guarantees of involved parties in the context
of a particular service provisioning [5]. Before a service
is delivered, an SLA is created, which in turn requires a
dynamic negotiation process where both parties express their
own demands and preferences to resolve possible conflicts and
arrive at a consensus [6].

SLA negotiation has been widely used in cloud computing
[7], but has not been fully considered in IoT middlewares [8],
even though a potentially huge number of IoT devices are
likely to engage in service provisioning [9]. Challenges for
SLA negotiation emerge from IoT characteristics such as its
large-scale and highly dynamic nature. The IoT will be an

ultra large-scale network containing billions of nodes that offer
the same or similar functionalities. Human intervention for
SLA negotiation may be infeasible. Unlike cloud services, IoT
services are likely to have more negotiable attributes, which
are not limited to QoS parameters. For example, the service
coverage can be affected by the sleep schedule of sensor
nodes [10]. Combined with the existence of mobile sensors,
it is possible to tailor a service’s location based on a user’s
expectation by adjusting a resource management mechanism.
Also, to reduce energy consumption and maximize profit, the
pricing mechanism may be dynamically set based on devices’
sleeping schedule or power consumption mode, and providers
may be willing to change devices’ status in line with the
users’ demands [11]. IoT services exhibit dynamic behavior in
terms of availability and mobility of resources, unpredictable
workload, and unstable wireless network condition. Thus, the
negotiation strategy should guarantee a good success rate and
utility when the negotiation time is limited.

Since IoT devices are geographically distributed in different
locations, we assume a middleware is deployed on fog nodes
(e.g., base stations, routers, switches, etc.) to tailor service
properties with candidate service providers based on the user’s
preference. We refer to the deployed nodes as gateways. In this
paper, we design a context-based negotiation strategy for gate-
ways that maps a user’s negotiation preference and available
resources to the decision-making function’s parameters, and
integrate the strategy to WS-Agreement Negotiation protocol.

The remainder of this paper is organized as follows. Section
II summarizes related work. Section III describes the context-
based negotiation strategy for IoT SLA negotiation. Section
IV details the experimental setup and evaluation results and
Section V concludes the paper with a discussion about future
research directions.

II. RELATED WORK

Compared to cloud computing, SLA negotiation in the IoT
environment is still in the preliminary stage. For example,
Gaillard et. al. proposed a centralized SLA management com-
ponent [12]. But this framework relies on human intervention
to finish the negotiation process. Mingozzi et. al. presented a
cross-layer SLA negotiation framework for M2M applications
[13], which only supports QoS negotiation in a single request-
reply interaction, and the negotiation strategy is not specified.

Faratin et. al. proposed three types of negotiation tac-
tics: time-dependent tactic, resource-dependent tactic, and
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behavior-dependent tactic [14]. They concluded that there is a
tradeoff between the number of deals and the utility gained,
and suggests that the use of different combinations of tactics
may outperform the use of a single tactic. Yao et. al. employed
fuzzy truth propositions and adopted a concession strategy that
takes time and resources into consideration [15], but lacks
a detailed description of the constraint model. Fharna et. al.
added an adaptive mechanism to the negotiation strategy and
proposed a policy-based approach [16] based on the perfor-
mance observations of three decision functions, but this may
not be practical when counterpart is adopting various unknown
strategies. Misura et. al. proposed a cloud-based mediator
platform where automatic negotiation is performed between
device owners and application owners [17]. The mathematical
model they adopted is a linear combination of previous offers,
which is similar to the behavior-dependent tactic. However,
this approach does not consider IoT service properties and
context information. In addition, it assumes that the strategy
will be specified when a device is registered in the platform,
which may not be suitable for a dynamic environment where
workload, supply, and demand are continuously changing.
Also, device owners may not be willing to expose their
strategies to the market. For the negotiation with incomplete
information, Zheng et. al. [18] proposed a game-theory based
strategy that combines the concession and tradeoff tactics to
resolve possible conflicts, which demonstrates a good balance
between utility and success rate under Monte Carlo simula-
tions. However, this approach does not guarantee a solution
will be found when one exists. Again, the strategy does not
consider the impact of the negotiation context such as time
and resources.

Metaheuristic algorithms and machine learning can also
be applied to negotiation, except for the decision function.
For example, Sim et. al. combined Bayesian learning with
genetic algorithms to search for the optimal strategy when
negotiating with incomplete information [19]. Narayanan et.
al. use the Markov chain to model bilateral negotiations among
agents, and Bayesian learning is adopted by agents to learn an
optimal strategy [20]. Alkayal et. al. proposed a negotiation
model based on particle swarm optimization to reduce the
negotiation time and increase the throughput [21]. However,
the common disadvantage shared by these approaches are the
long negotiation time, which may increase significantly with
the number of tasks or the number of negotiable parameters.

III. NEGOTIATION STRATEGY

Although currently there is no standard SLA negotiation
language for the IoT environment, it is possible to apply
the web service SLA negotiation models to IoT services
by extending existing approaches. WS-Agreement Negotiation
(WSAG-Negotiation) is a standard negotiation specification for
web services, which supports negotiating and creating SLAs
by exchanging offers between a service provider and consumer
[22]. In WSAG-Negotiation, The SLA-supported services are
published by a service provider in the form of agreement
templates (SLAT). An SLAT is a partially completed agree-

ment filling default values of negotiable SLA parameters that
the providers are expecting to offer, which can be regarded
as the blueprint to create offers and the final SLA. A ne-
gotiation session begins when a provider’s offering, outlined
in an SLAT, cannot satisfy the user’s request. However, the
negotiation strategy is not defined in WSAG-Negotiation. In
this section, we describe the negotiation strategy using the
following denotations.

A negotiation session between a gateway g and a service
provider p is defined as a finite sequence of offer collec-
tions (Xt1

g→p, X
t2
p→g, X

t3
g→p, ...) with t1 < ... < tn (ti ∈

[t0, tdeadline]). Xt1
g→p is a vector of negotiation offers that

proposed by g to p at time t1. A negotiation offer, proposed
by p to g at time t is defined as xtp→g , consisting of a
collection of negotiable terms J and the offer state s. Each
negotiable term j (j ∈ J) has a negotiable space noted by
Ωgj , which is the collection of possible values of term j. The
value of term j offered in xtp→g is noted by xtp→g[j]. The offer
state derives from the state model of WSAG-Negotiation [22],
which controls the interactions between negotiation parties and
indicates the rules to take action after receiving a new offer.
WSAG-Negotiation defines four possible states for an offer:
{Advisory, Solicited, Acceptable, Rejected}. An Advisory offer
indicates multiple back-and-forth interactions, which means
the counterpart can either accept, reject or propose a new offer.
A Solicited offer indicates a single request-reply interaction,
which means the counterpart can only accept or refuse the
offer; An Acceptable offer indicates all the negotiated items are
acceptable, no further negotiation is required; and a Rejected
offer indicates that the offer is rejected and the negotiation
is terminated. The negotiation space may be expanded with a
tolerance value τ (0 ≤ τ < 1), within which the value may
go beyond the negotiation space and is still acceptable. This
is a soft negotiation space Ω′

g
j . The negotiable terms of IoT

services may consist of both functional and non-functional
features, we classified them into four types: QoS parameters,
data rate, temporality and service coverage.

QoS parameters include service non-functional properties
such as latency, availability, etc. In general, consumers and
providers may have conflicting interests, e.g., a consumer
hopes to obtain service with lower price but higher availability,
whereas the provider attempts to offer the service with a higher
price but lower availability. This means for consumers, the
availability is a “higher-is-better” parameter, and the price
is “lower-is-better” parameter. The negotiation space of QoS
parameters is defined as Ωgqos=[minqos,maxqos], presenting
the ranges of preferred values and reserved values. The soft
negotiation space Ω′

g
qos of higher-is-better and lower-is-better

attributes are [minqos−τ,maxqos] and [minqos,maxqos+τ ]
respectively. In a competitive market, providers may regard
Ωpqos as business sensitive information and may not be willing
to disclose to the public. This means that a QoS negotiation
could take place with incomplete information, which may take
multiple rounds to come to an agreement.

Data Rate includes both the data reporting rate and data
sampling rate, which are important for emergency response
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applications such as fire detection. Negotiation of a data rate
may occur under an assumption of incomplete information.
As a higher data rate indicates a more timely and reliable
measurement, it is a higher-is-better parameter for consumers.
The negotiation space is defined as Ωgrate=[minrate,maxrate]
and Ω′

g
rate=[minrate − τ,maxrate].

Temporality relates to the time a service is available. We
assume that service providers would specify their negotiation
space of temporality ΩpAT in the initial offer in the form
of negotiation constraints when the request cannot be fully
satisfied. ΩpAT lists all the available time ranges around the
requested time slot for gateways to compromise and select
the most preferred one. We define ΩpAT={AT p1 , AT

p
2 , ..., AT

p
n}

(n ≥ 1) where AT pi represents the available time range
[ti0, tie] offered by p.

Service Coverage specifies the spatial feature of an IoT
service. We assume providers specify their negotiation space
of service location Ωploc in negotiation constraints if the
request cannot be fully satisfied. For simplicity, we model the
coverage with a circle. For service provider p, the negotiation
space of coverage is defined as Ωploc={loc

p
1, loc

p
2, ..., loc

p
n}

(n ≥ 1) where locpi represents the available service area
[loccenter, locradius]. For gateway g, the negotiation space is
defined as Ωlocg={locpr , d} where locpr represents the requested
location, and d represents the acceptable distance in meters.

A. Scoring Function

To select the best offer xtp→g from Xt
p→g , gateways need

to evaluate service properties using a scoring function V gj . We
list three types of scoring functions targeting each individual
feature. For QoS parameters and data rate, the scoring func-
tions of higher-is-better attributes and lower-is-better attributes
are defined in Equation 1 and Equation 2 respectively [14]:

V gj (xtp→g[j]) =
xtp→g[j]−min

g
j

maxgj −min
g
j

(1)

V gj (xtp→g[j]) = 1−
xtp→g[j]−min

g
j

maxgj −min
g
j

(2)

For temporality, the evaluation is based on matching the
requested time and the available time proposed by a service
provider. This matching degree depends either on the time or
the duration. The time-dependent matching is inspired by the
rating function proposed in [23]:

V gAT (ATi) =
ATi ∩Rtime

Rtime
(3)

where Rtime is the request time slot [tr0, tre]. We also define a
duration-dependent scoring function for each time range ATi:

V gAT (ATi) =

{
1, if Rdur > ATidur

ATidur
/Rdur, otherwise.

(4)

where Rdur and ATidur
denote the request duration and

duration of available time respectively.
Service coverage is evaluated by calculating the distance

between the requested area and the service area. We refer

to the coordinates that have the same value before the third,
fourth, fifth decimal places as the same location (d = 11m),
close location (d = 110m) and nearby location (d = 1100m)
respectively. The distance-based scoring function is defined as
[23]:

V gloc(loci) =


1, dist(req, i) < r

1− dist(req,i)
d+r , r ≤ dist(req, i) < d+ r

0, otherwise.
(5)

where r represents the service coverage radius, and dist(req, i)
represents the distance between the requested location and the
centre location of service coverage.

B. Bilateral Negotiation Process

In each round, provider p may prepare more than one
counter offer as a response, with each offer satisfying parts
of the requirements. When a gateway g receives counteroffers
Xt
p→g from p, the decision-making model it adopted is illus-

trated in Algorithm 1. Firstly, g validates Xt
p→g based on con-

straints specified in SLAT (Line 2). Then, g evaluates Xt
p→g

using the scoring functions, and select the most preferred offer
xtp→g that has the maximum cost performance (Line 3). The
cost performance is defined as:

Cp(x
t
p→g) =

V gj (xtp→g)

price
(6)

where V gj (xtp→g) =
∑k
j=1 wjV

g
j (xtp→g[j]) is the total score

computed with the weight of attribute j (
∑k
j=1 wj = 1).

Next, g takes actions at time t′ based on the state of xtp→g .
If xtp→g is an advisory offer, a pre-defined negotiation tactic
is performed to update the current expectations of negotiable
terms by making a compromise on conflicted items (Lines 18).
The updated expectations are further compared to xtp→g to
get the most optimized solution (Lines 21-37). If the current
round is approaching the deadline, to increase success rate,
a ultimatum is composed by replacing the expectations of
conflicted terms with reserved values (Line 23). If xtp→g is
acceptable in the current round, the negotiation is successfully
finished, and a pending SLA is created for the consumer to
authorize (Lines 7-9). However, if the negotiation tactic can
not produce valid results that satisfy the constraints, a solicited
offer is created (Line 36). Lines 10-16 and 22-24 indicate that
the strategy can guarantee to find a solution when negotiation
parties have intersected negotiation space.

The negotiation goal of a gateway is to find an acceptable
deal that satisfies the negotiation constraints of a consumer
but which, on the other hand, maximizes the utility. A game-
theory based negotiation strategy that combines the concession
and tradeoff tactic demonstrates a good balance in utility and
success rate [18]. However, this approach only supports the
negotiation attributes whose value varies between 0 and 1.
Besides, it uses a static concession rate without considering
negotiation context information, such as time, resources and
user’s preference. Thus, we modified the approach in five
aspects: (i) defining a context-based utility function to make
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Algorithm 1 Perform Negotiation Strategy

Input: received offers Xt
p→g , negotiable terms in received offer

xt
p→g[J ], last proposal xt−1

g→p, consumer identifier idc, provider
identifier idp, soft negotiation spaces of terms Ω′g

1: while received offers Xt
p→g and t ∈ [t0, tdeadline] do

2: Xt
p→g ← validatedOffers(Xt

p→g)
3: xt

p→g ← getOptimizedOffer(Xt
p→g)

4: switch xt
p→g .getState() do

5: case Rejected
6: sendResponseMsg(idc)
7: case Acceptable
8: sla← createSLA(slat, xt

p→g)
9: sendResponseMsg(idc, sla)

10: case Solicted
11: if ∃j ∈ J, xt

p→g[j] /∈ Ω′
g
j then

12: xt+1
g→p ← newOffer(xt

p→g ,Reject)
13: else
14: xt+1

g→p ← newOffer(xt
p→g ,Accept)

15: end if
16: sendNegotiationMsg(idp, xt+1

g→p)
17: case Advisory
18: suc← performNegotiationTactic(xt

p→g ,xt−1
g→p)

19: if suc then
20: V

′
← getTacticOutput()

21: if ∃j ∈ J, xt
p→g[j] /∈ Ω′

g
j then

22: if due then
23: V

′
← setUltimatum(xt

p→g ,Ω′gj )
24: xt+1

g→p ← newOffer(V
′
,Solicited)

25: else
26: xt+1

g→p ← newOffer(V
′
,Advisory)

27: end if
28: else
29: if due or Cp(xt

p→g) > Cp(V
′
) then

30: xt+1
g→p ← newOffer(xt

p→g ,Accept)
31: else
32: xt+1

g→p ← newOffer(V
′
,Advisory)

33: end if
34: end if
35: else
36: xt+1

g→p ← newOffer(xt−1
g→p,Solicited)

37: end if
38: sendNegotiationMsg(idp, xt+1

g→p)
39: end while

concessions and tradeoffs (Section III-C); (ii) using the scor-
ing value as the inputs of utility function; (iii) dynamically
computing the probability of playing a tradeoff tactic in each
round based on the amount of resources (i.e., Pt = 1− 1/N ,
N is the number of candidate services providers available
in the environment); (iv) adopting a greedy concession tactic
where the degree of concession depends on the comparison of
the current expectation and the received offer; (v) switching
to concession tactic if tradeoff tactic cannot produce valid
results that satisfy the negotiation constraints. We refer to this
modified mixed negotiation strategy as UMI, the flowchart of
concession and tradeoff tactic is shown in Figure 1.

C. Utility Function

The utility function is designed to measure the level of
satisfaction on each negotiable terms. The utility function is

Fig. 1: Concession and tradeoff tactic in UMI

Fig. 2: Exponential utility function when τ = 0

defined as following:

Ugj (xtp→g[j]) =
keβV

g
j (xt

p→g [j]) − 1

eβ − 1
+ 1− k (7)

where β (β ∈ IR and β 6= 0) determines the convexity degree
of the curve, V gj is scoring value of term j computed by
corresponding scoring function (V gj ∈ [0, 1]), k is the initial
constant, which can be computed using the formula:

k =
1− eβ

e−βτ/∆j − eβ
(8)

where τ is the tolerance value, and ∆j is the length of
negotiation space Ωgj (i.e., ∆j = maxgj −min

g
j ).

In the utility function, β controls the concession rate. When
β < 0, the concession rate is high in the beginning, but
the concession rate decreases as the number of negotiation
rounds increases; when β > 0, the concession rate is small
in the beginning and increases as the number of negotiation
rounds increases. Since a bigger concession rate accelerates
the negotiation convergence, we compute β based on the
negotiation desirability factor (DF, 0 < DF ≤ 1) and the
attribute weights wj specified by the user:

β =

{
0.7e5(0.5−DF ) + 0.3e3wj , DF ≤ 0.5

−0.7e5(0.5−DF ) − 0.3e3(1−wj), DF > 0.5
(9)

PerIoT'19 - Third International Workshop on Mobile and Pervasive Internet of Things

211



IV. EVALUATION

A. Experimental Setup

To test our algorithm, we designed two types of providers:
static providers and mobile providers. Under each type, we
classified the providers based on the service level they can
provide: high-performance (HP), moderate-performance (MP),
and low-performance (LP). We define θ as the degree of
intersection (DoI) between the negotiation spaces of providers
and consumers, which is equal to 0.7, 0.4 and 0.2 for HP,
MP and LP providers respectively. For mobile providers,
we define θloc as the probability to accept the requested
location, which is equal to 0.9, 0.5, 0.2 for HP, MP and LP
providers respectively, and the price is linearly dependent on
the standard Euclidean distance between the current offering
and the requested properties. For static providers, the HP, MP,
and LP providers have six, four and two service instances
uniformly distributed in the simulated area respectively, and
the price is defined with a range if it is negotiable (PIN),
or a static value if it is non-negotiable (PNN). For each
consumer, the requested location is randomly assigned within
the simulated area.

We created an SLAT for a hazardous gas detection service
based on concepts proposed in IoT literature [24][25], which
specifies the service type, operation parameters, service cover-
age, sampling parameters, price, and QoS attributes including
accuracy, availability, and response time. Two test cases are
defined to target different negotiation scale. Test case one
has two candidate providers for each request: one mobile MP
provider and one static MP provider. Test case two has twelve
candidate providers for each request: six mobile providers (LP,
MP, and HP) and six static providers (LP-PIN, LP-PNN, MP-
PIN, MP-PNN, HP-PIN, HP-PNN).

Three metrics are used to evaluate the performance: ne-
gotiation efficiency, success rate, and the average response
time. The efficiency is defined as the ratio of the negotiated
cost performance and the initially expected cost performance.
We compare the performance against four other tactics: the
mixed strategy (UMC) that inspired our work [18], behaviour-
dependent relative tit for tat (BDR), time-dependent linear
tactic (TDL) and resource-dependent patient tactic (RDP) [14].
BDR, TDL, and RDP are chosen because they are pure
tactics which shows a good performance in terms of utility
and successful deals. Considering providers may be resource-
constraint devices, providers only play TDL while consumers
play the five different tactics respectively. To reduce the chance
variation, each test case is repeated for 100 times under two
different values of desirability (DF = 0.3 and DF = 0.9).

B. Results

Results in Figure 3 shows the efficiency when the maxi-
mum negotiation round r equals to 20. UMI has no obvious
advantage when the number of candidate service providers
is small. As the number of candidate providers increases the
efficiency in UMI improves compared to other tactics. We
perform the single-factor ANOVA and Tukey’s Method [26]

Fig. 3: Negotiation efficiency using different tactics (r = 20)

Fig. 4: Success rate (DF = 0.3)

Fig. 5: Average response time (DF = 0.3, r = 20)

to determine if there was a significant difference between these
five tactics. For test case 1, F = 380.41 and p < 0.0001 when
DF = 0.3, and F = 399.08 and p < 0.0001 when DF = 0.9.
From the 95% Tukey simultaneous confidence interval (CI),
BDR is significantly different from other tactics, while the
rest tactics have no significant statistical difference. For test
case two, F = 61 and p < 0.0001 when DF = 0.3, the 95%
simultaneous CI shows that UMI is significantly different from
other tactics, while the rest tactics have no significant statistical
difference. When DF = 0.9, F = 30.87 and p < 0.0001,
the 95% simultaneous CI shows that UMI and BDP have no
significant statistical difference, but they are significantly dif-
ferent from UMC, TDL, and RDP. Figure 4 shows the success
rate when r decreases from 20 to 10 (DF = 0.3). UMI and
TDL demonstrate a good and stable performance compared to
other tactics regardless of the maximum negotiation rounds,
while UMC and BDR are greatly impacted by the parameter,
which makes them unsuitable for IoT service negotiation
considering the massive message payload. Figure 5 shows that
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the five approaches have a similar performance in terms of
responsiveness under different scenarios. The negotiation time
increases significantly as more candidates providers existing
in the environment. It suggests that predicting the negotiation
result based on historical data and selecting the candidate
providers that are most likely to make an agreement before
actual negotiation may be useful to reduce the response time
while keeping a good utility and success rate.

V. CONCLUSION AND FUTURE WORK

This paper tackles automatic SLA negotiation for IoT ser-
vices when consumers and service providers have a conflicting
preference on service properties. Previous work on SLA
negotiation focuses on cloud computing and web services,
which does not consider the domain-specific properties of IoT
services. In this paper, we introduced a negotiation strategy
that considers the functional and non-functional service prop-
erties. In each negotiation round, we select the best offers by
using different scoring functions that target different service
properties and propose counteroffers based on these offers
by performing a context-based negotiation tactic. To increase
the success rate and utility, we designed an exponential
utility function and integrated a mixed negotiation strategy
into the WS-Agreement Negotiation protocol to guarantee a
successful negotiation when providers and consumers have
intersected negotiation space. The evaluation result shows that
the proposed tactic produces a higher utility compared to other
existing approaches, and maintains a high success rate when
the number of interactions is limited.

As IoT is a large-scale environment with energy-constrained
devices, time and overhead can be a key requirement for SLA
negotiation. In future work, the intelligent opponent learning-
based strategy may be useful to reduce the response time and
negotiation rounds in multi-attribute SLA negotiation.
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