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Abstract—Smart spaces are typically augmented with devices
capable of sensing various inputs and reacting to them. Data
from these devices can be used to support system adaptation,
reducing user intervention; however, mapping sensor data to
user intent is difficult without a large amount of human-labeled
data. We leverage the capabilities of head-mounted immersive
technologies to actively capture users’ visual attention in a
unobtrusive manner. Our contributions are three-fold: (1) we
developed a novel prototype that enables studies of user intent in
an immersive environment, (2) we conducted a proof-of-concept
experiment to capture internal and external state data from
smart devices together with head orientation information from
participants to approximate their gaze, and (3) we report on both
quantitative and qualitative evaluations of the data logs and pre-
/post-study survey data using machine learning and statistical
analysis techniques. Our results motivate the use of direct user
input (e.g. gaze inferred by head orientation) in smart home
environments to infer user intent allowing us to train better
activity recognition algorithms. In addition, this initial study
paves a new way to conduct repeatable experimentation of smart
space technologies at a lower cost.

I. INTRODUCTION

Smart spaces are areas augmented by devices that can
interface with and regulate appliances in the home, such as
heating and ventilation systems, lights, voice assistants such
as Amazon Alexa, and televisions. They focus on automating
tasks done in the space in order to increase productivity and
reduce user intervention. While automation based on explicit
user interaction with devices is simple, figuring out user
intent implicitly is more difficult and requires experimentation
and the training of complex algorithms to determine what
smart-spaces’ occupants are doing. Activity recognition and
prediction, which use sensor data from and observations about
an environment to understand the general activity or task a
user is currently performing and anticipate future actions, has
become an active area of research since the birth of ubiquitous
computing [1], with the goal of more naturally and efficiently
predicting what resources/information/device settings etc. are
needed for various tasks [2].

Without the understanding of user intent, activity recog-
nition relies solely on data collected from smart home ob-
jects. Sensor data is used to infer activities being performed,
but sensors can be used for multiple purposes and sensor
data is often noisy, making activity recognition difficult [3].
Some approaches have gone beyond activity recognition to
attempt activity prediction, with the intent of recognizing what
activities are being performed currently and then predicting

what activities users will perform next based on past events
or sensor data. Some of these activity prediction algorithms
simply predict a next activity given a sequence of events that
has previously occurred based on causality programmed by
the developer, while others also take the timing of events into
account, and can provide an estimate of when the next activity
is likely to occur [4]. Many of these activity recognition and
prediction algorithms require training in the form of supervised
machine learning with manually labeled data [3].

In addition, studying activity recognition algorithms can be
cumbersome, as setting up the experimentation environments
is time-consuming, costly, and these environments can be
difficult to augment appropriately. For example, replaying
events accurately requires a complex and time-synchronized
distributed system by itself. The use of mixed reality not
only paves a new way for repeatable experimentation but
also provides a unobtrusive method for obtaining user visual
attention and helping us to infer user intent naturally.

In this paper, we present a study and experimentation on
using mixed reality to infer user intent and improve activity
recognition. The experimentation consists of various physical
and virtual smart home devices which create a space that is
modular and can be replayed effectively. Participants immerse
into this space through head-mounted augmented reality gear
(e.g., Microsoft HoloLens) which offers additional sensing
capabilities, such as head orientation, head position, and hand
gestures. To measure the effectiveness of this new method for
inferring user intent, we conduct a user study involving 30
participants. Participants are asked to perform two daily tasks
within the immersive smart space. We log all data from both
physical and virtual smart devices and HoloLens. Data from
sensing devices and a participation questionnaire (pre/post
experimentation) is systematically analyzed with a goal to
answer the following questions:

1) Can the use of head orientation and attention data
collected from a mixed reality headset complement data
from smart devices to enable meaningful recognition of
user activity?

2) How does a user’s previous experience with smart home
devices and/or their previous experience with augmented
reality influence their ability to complete tasks in a mixed
reality space?

3) Does the use of head orientation data alone allow for
better recognition of user activity than the states of
devices in the user’s environment?
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The use of mixed reality as an attempt to understand and
infer user intent is new and viable, due to the rapid adoption
of mixed reality wearable devices making direct extraction of
user visual attention possible in an unobtrusive manner. We
summarize our main contributions as follows:

• A user study on how mixed reality can improve activity
recognition and the understanding of user intent. We
also share the lessons learned from constructing the
experimentation system and user study.

• The development of the first mixed reality experimen-
tation system that enables studies of user intent in an
immersive and repeatable environment.

• Quantitative and qualitative evaluations of data logs and
survey data to measure the effectiveness of this new
method.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of related work in activity recognition
and mixed reality solutions. Section III describes the setup of
our mixed reality environment. Section IV provides details
about our user study, and results are presented in Section V.
Sections VI focuses on the lessons learned and discusses
possible future directions of our work. Finally, Section VII
concludes the paper.

II. RELATED WORK

Prior work on activity recognition and prediction is highly
applicable to smart home environments. In fact, physical smart
homes have been used as a suitable test space for researchers
studying activity recognition and prediction. The CASAS
project [5], for example, focuses on the collection and sharing
of smart home sensor data which is used to train recognition
and prediction machine learning algorithms. Virtual smart
home environments are also beginning to emerge due to
their convenience; for example, OpenSHS provides a cross-
platform 3D smart home simulator for dataset generation [6],
and SIMACT is designed for research in the area of activity
recognition [7]. Virtual Reality has also been used as a test-bed
to design a home environment quickly and inexpensively, in
order to collect data on which to create an activity recognition
system [8], and has been combined with gesture sensors to
conduct occupational therapy exercises and to collect im-
portant medical data [9]. Researchers have also developed
software to visualize and control smart home environments
in virtual reality [10]. Augmented reality provides the further
benefit of physical presence while still affording the flexibility
of including virtual devices to augment the space [11].

While collecting data from smart devices is common in the
field of pervasive computing, the collection of first-person data
is still a novel idea within the context of activity recognition.
Although most smart home datasets involve only information
from sensors placed around the home, such as thermostats and
motion sensors, several researchers have tried collecting data
from the user as well. For example, researchers have attempted
to use cameras attached to the subject to observe actions up
close or across a large area, allowing an algorithm to learn
from this video feed over time [12], [13].

Fig. 1: System architecture for data collection system

Various methods have been proposed to collect sensor and
environment data in order to perform activity recognition and
prediction. Early work in the computer vision community has
used video samples of various activities to train activity recog-
nition algorithms [14]. Further developments in the pervasive
computing community have explored using on-body sensors to
collect sensor and environment data needed to perform activity
recognition, and using RFID tags on objects to recognize what
parts of the environment a user utilizes [15]. Recently, attempts
have been made to create unsupervised approaches to activity
recognition, in which systems can be trained without human
labeling [15].

III. IMMERSIVE SMART SPACES THROUGH AR

This section focuses on the setup of the environment and
methods used to collect activity-related data in an augmented
reality (AR) smart home. Fig. 1 illustrates the basic architec-
ture of our framework which is designed to be modular so that
additional devices can easily be incorporated. Our application
uses the Unity 3D graphics platform to render the scene in
real-time based on head orientation and position information
from the HoloLens. The HoloLens’ front facing camera also
captures the user’s hand gestures which are used to update the
rendering of the AR environment and control specific physical
devices.

For our simulated home environment, we attempted to create
an experience that was as close to a real-life smart environment
as possible while considering the limitations of the HoloLens.
Our environment is comprised of the following physical and
virtual objects:

• physical objects
– counter surface
– microwave and bags of popcorn
– lamp with Philips Hue bulb

• virtual objects
– microwave UI superimposed on the physical mi-

crowave
– stove top
– uncooked steak, pan, and plate
– cupboard
– television
– window
– Nest thermostat linked to a real Nest Home account
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– virtual light switch that controls the physical Philips
Hue bulb

– control panel allowing user to see the status of the
window, stove, temperature, etc.

Views of this simulation can be seen in Figures 3, 4, and
5. For grasping virtual objects, the HoloLens’ built-in air tap,
clicking motion (as illustrated in Figure 2) was utilized. This
click-and-drag motion, which follows the user’s hand motion
rather than head orientation, added a more natural element to
object interaction. For objects that are typically static, such
as the television and thermostat, we added other interaction
mechanisms, including the ability to turn on the television
and adjust the room temperature using the Nest thermostat.
The cupboard doors and window could also be opened and
closed using a single tap rather than the dragging motion
used for movable objects. As the HoloLens does not provide
gaze information, we use the center of the HoloLens’s field
of view as an approximation for the user’s area of focus. This
approach is in line with the work of other researchers which
has demonstrated that head pose and orientation can be used
for estimating visual attention [16].

Fig. 2: Microsoft HoloLens’s Air Tap gesture

With our current setup, data from the HoloLens’ camera
and sensors along with data from the other devices in the
environment are streamed over a dedicated network to a desk-
top server where it is processed. The user’s head orientation
is computed from this data and the Unity application sends
updated graphics back to the HoloLens in real-time. The data
from all devices is also synchronized and logged at a rate of
2Hz for further analysis. In the future, for increased portability,
it would be more efficient to deploy an application containing
our smart home environment directly from the HoloLens.

IV. USER STUDY

We recruited a total of 30 participants in our user study. The
majority of our participants were college students, with 73.3%
under the age of 24 and 26.7% between ages 25 and 35. 46.7%
of participants had a high school diploma, 20% had a bachelors
degree, 30% had a masters degree, and one participant had
no degree. 46.7% of participants identified as female and
53.3% as male. 63.3% of our participants rated themselves as
somewhat knowledgeable about technology and 23.3% rated
themselves as very knowledgeable, and no participants stated
that they were mostly unfamiliar with or that they had no
experience with technology. Half of our participants had no

Fig. 3: View of smart home from AR perspective

smart home devices and 13.4% said that they had little to
no knowledge of smart devices, but 40% stated that they were
somewhat knowledgeable and 13.3% stated that they were very
knowledgeable with smart home devices.

Participants were first asked to read and sign a consent form.
They were then given a pre-experiment questionnaire asking
for demographic information and participant’s experience with
and knowledge of general technology, AR, and smart home de-
vices. On completion, we set them up in our test environment,
taught them the “select” hand gesture, and instructed them to
experiment in the environment until they felt comfortable with
the HoloLens’ various functions.

The main body of the experiment involved immersing the
participants in our simulated kitchen environment. They were
briefed on the functionality of all of the virtual objects so
that data collection wouldn’t have to be interrupted mid-
activity to answer questions, and then asked to act out the
completion of two tasks. The first task was cooking a virtual
steak, which involved turning on a burner, placing a pan on
the burner, placing the steak on top of the pan, and waiting for
ten seconds. The second task was preparing popcorn, which
involved putting a cardboard popcorn box into the physical
microwave and then virtually clicking the “popcorn” button
to trigger a 45-second timer. When the popcorn was finished
the microwave would beep, and the subject taking the popcorn
box out of the microwave would signify the end of that task.
Participants were instructed to use any device in the room to
go about the task as they would normally at home, and we
tried not to suggest that they perform any specific sequence
of actions as not to influence their behavior. After the two
tasks were completed, we instructed participants to explore
their space if they wanted to before ending the simulation.

Next, we administered a post-experiment questionnaire,
which included three questions on a Likert Scale asking about
the user’s in-activity experience including how helpful they
thought the objects were, whether or not their opinions of
smart devices had changed, and whether or not they would
be more likely to purchase and use a smart device. These
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Fig. 4: Another view of smart home from AR perspective

Fig. 5: View of user with HoloLens from outside perspective

were followed by two short-answer sections asking the user to
suggest possible applications for our framework and to provide
any additional comments about the technology (AR and smart
devices) used in the experiment.

V. EVALUATION

A. Classification results

Because of the current simplicity of our model, we found
it best to use a hidden Markov model (HMM) to evaluate
our data. We started with two states representing the task
directives, cooking steak and microwaving popcorn, and then
added a third exploration state to account for any time not
spent directly on the two tasks.

While our dataset was large enough to be significant, it was
also too small to create multiple dedicated testing and training
sets. To generate more significant results with the data we had,
we used 10-fold cross-validation, splitting up our data into 10
sets and randomly resampling the data to evaluate our model.

For testing purposes, we hand-labelled all of our data,
which would be impossible for larger datasets, but this made
quantifying the accuracy of our model much simpler. In future
experiments, it would be more beneficial for hidden states to
be labeled during the experiment by the researcher. It should
also be noted that the data collected from objects in the room,
such as the temperature, stove status, and microwave status, is

not collected as continuous data, but rather as discrete sensor
events as triggered by the user. So, to reflect the discrete nature
of the data, we have referred to the dataset collected from
these objects not as object states, but as object events. We
hoped that the sensor data collected from the environment and
headset would generate data natural enough to compare with
data collected from completely physical smart spaces when
put through activity recognition algorithms.

The HMM trained and tested on object event data performed
relatively well, with an average of 66% precision, referring to
the ability of the model to identify only relevant activities,
and an average of 68% recall, meaning that it correctly found
68% of relevant activities. This HMM tended to choose the
exploring task at times when the participant was making pop-
corn or steak, often classifying tasks not related to exploring
as exploration tasks. This resulted in a precision of 74% for
exploration as seen in Table I. The event HMM’s preference
for the exploring task can be explained by the user’s tendency
to use devices in the room not as tools to help them cook
or make popcorn, but out of curiosity. We expect this issue
to become less prominent as familiarity with the environment
increases and as improvements are made to the visual realism
of the virtual objects.

The HMM trained and tested on attention data performed, in
general, worse than the object event model, with an extremely
strong bias toward the cooking steak task. The model we tested
our attention data on has an average of 42% precision, and
55% recall, as seen in Table III. Precision for the cooking
steak task for this model was 93% while precision for the
microwaving popcorn and exploring tasks were only 13% and
20% respectively, as shown in Table II. The model’s preference
towards the steak task can be explained by the active time it
takes to cook the steak. During the popcorn task the participant
can turn on the microwave, look elsewhere for 45 seconds, and
then look back at the microwave very briefly; however, the
steak task required the participant’s more constant attention.
Since our model has only 3 hidden states, this effect is much
more exaggerated, as the task of cooking steak accounts for
1/3 of possible hidden states.

Fig. 6 shows examples of machine-labeled data compared to
our baseline human annotated data for three participants. The
Figures illustrate the accuracy of both the attention-trained and
event-trained HMMs.

TABLE I: Precision and recall of results from event data

Precision Recall
Cooking Steak .52 .59
Microwaving Popcorn .73 .76
Exploring .74 .69

TABLE II: Precision and recall of results from attention data

Precision Recall
Cooking Steak .93 .52
Microwaving Popcorn .13 .53
Exploring .20 .61

PerLS'19 - Third International Workshop on Pervasive Smart Living Spaces

230



Fig. 6: Inferred user attention data and device’s event data of three participants.

TABLE III: Averaged precision and recall from event and
attention data

Precision Recall
Attention .42 .55
Events .66 .68

B. User feedback analysis

Questionnaires that participants filled out before and after
were concatenated, and statistical analysis and Chi-squared
tests were done on various responses throughout the combined
form using IBM SPSS. Of our 30 participants, our demo-
graphic information shows that:

• 16 were male and 14 were female
• 76% were under age 24, and the remaining participants

were ages 25-35
• 83.3% were students, 10% had full-time jobs, and 6.7%

had part-time jobs
• 46.7% had high school diplomas, 3.3% had no degree,

20% were at the Bachelors level, and 30% were at the
Masters level

According to Chi-squared tests, although there is not a wide
range of ages included in our study, we found no significant
differences between the gender or age of participants and their
familiarity with smart home devices.

Most of our participants thought the space and the devices
in it were helpful to them when it came to doing the two
household tasks, with 53.3% reporting that they were some-
what helpful, and 16.7% reporting that they were very helpful.
In response to the question “As a result of their inclusion
and your time with them, are you any more interested in
these technologies and their use around the home?”, 50%
responded that they were very interested, and 40% responded
that they were somewhat interested. According to Chi-squared
tests, we found no significant differences between participants’

Fig. 7: Proposed experiment setup for data collection

familiarity with smart home devices, and how helpful they
viewed the smart home devices in the space to be.

VI. LESSONS LEARNED

The implementation of our activity recognition models
show that unimodal device state analysis is more accurate
than unimodal head orientation/attention analysis with data
provided by the HoloLens, but as head orientation data is
collected continuously, it can be more useful for detecting user
intent when augmenting object events that occur at widely-
spaced intervals. While neither method has proven to be very
accurate or precise, this can be remedied by implementing
a better activity recognition system that combines both head
orientation and device state modes.

In the future, for portability, it would be more efficient to
deploy an application containing our smart home environment
directly from the HoloLens, as shown in Figure 7. This would
allow the environment to run without directly communicating
with a computer running Unity, and increase the ease of setup
of our smart environment even more.

Works utilizing the framework of our project would output
more sophisticated data if a larger variety of tasks were to
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be done in the space, and users could go about tasks in the
order they pleased. We believe that including more than our
2 existing tasks will make the collected data better aligned
with real-life use, and will increase the significance of what
our hidden Markov models predict. Including more smart
devices and virtual objects would help accomplish this by
allowing users to complete more every-day tasks, reducing
the bias towards one task that has been shown in our activity
recognition analysis. Future works could also improve the
congruence between different tasks done in the space, so that
the vast majority of tactile tasks are based on physical rather
than virtual objects. The tasks done in this study were half
physical and half virtual, and we believe that user comfort
will improve if virtual interactions are limited to interactions
with smart devices, keeping the direct tasks at hand to be
physical. We would also want to allow the user to move objects
that are interactable but confined to a plane of motion, such
as the cupboard doors and window, through a click-and-drag
motion, rather than with a single click. Putting the user in a
more realistic space would also reduce the level of exploration,
making the flow between different tasks more realistic. For
example, the thermostat placed in our environment didn’t
actually affect the room’s temperature and the light didn’t
significantly increase the brightness of the room. As a result,
most participants utilized these objects not to aid in their tasks
but out of curiosity, making our data less realistic. Because of
this, we should attempt to make interactions with any object in
our smart home environment as realistic and connected with
reality as possible, while still minimizing the time and expense
of setting up physical smart home devices. Future works
should also seek to collect a much larger and more diverse
dataset, as our 30 participant dataset was too small to create
dedicated training and testing sets. All of our participants were
35 or younger and the majority were college students, making
it impossible to draw conclusions on how different age groups
or people with differing occupations would react to the space,
so future studies determining the ease of use and navigation of
this type of space with those populations would be insightful.

VII. CONCLUSION

In this study we developed a mixed reality environment
that we used to represent an activity recognition framework
that attempts to report what task a user is doing in our
virtual space. Initial activity recognition models that we have
been able to develop with participant data gathered from
the space show that we are able to recognize tasks done in
the space from event and head orientation data to a degree
comparable to models based on physical smart home data,
and in fact, head orientation collected from headset sensors,
while not as accurate as object state information, provides
a faster mechanism for recognizing the user’s activity. In
addition, most users noted that they were not hindered by
the unfamiliarity of mixed reality technology that fueled this
experience, as our questionnaire analysis data shows. Our
smart home environment successfully implements a more
portable smart environment, and has the potential to collect

data that is as useful as physical smart home data, with the
addition of attention data taken directly from headset sensors.
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