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Abstract—In this paper, we focus on Kendo, which is a
traditional sport in Japan, and propose a strikes-thrusts activity
recognition method using a wrist sensor towards a pervasive
Kendo support system. We collected the inertial sensor data set
from 6 subjects. We attached 3 inertial sensor units (IMUs) on
the subjects body, and 2 IMUs on the Shinai (bamboo sword used
for Kendo). On the body, IMUs were placed on the Right Wrist,
Waist and Right Ankle. On the Shinai, they were placed on the
Tsuba and Saki-Gawa. We first classified strikes-thrusts activities
consisting of 4 general types, Men, Tsuki, Do, and Kote, followed
by further classification into 8 detailed types. We achieved 90.0%
of F-measure in the case of 4-type classification and 82.6% of
F-measure in the case of 8-type classification when learning and
testing the same subjects data for only Right Wrist. Further,
when adding data of sensors attached to the Waist and Right
Ankle, we achieved 97.5% of F-measure for 4-type classification
and 91.4% of F-measure for 8-type classification. As a result of
leave-one-person-out cross-validation from 6 subjects to confirm
generalized performance, in the case of 4-type classification, we
achieved 77.5% of F-measure by using only 2 IMUs (Right Wrist
and Shinai Tsuba).

Keywords—Wrist sensor, Activity recognition, Machine learn-
ing, Wearable computing, Sensor position, Sports support, Kendo

I. INTRODUCTION

In recent years, the utilization of information technology in
sports fields is rapidly increasing. It is expected that detailed
analysis and feedback provided by information technology will
lead to performance improvement and enhancement of the
training process [1]. In basketball and climbing, there were
studies that analyzed the activity using an inertial sensor unit
(IMU) attached on the wrist [2], [3].

We have also been studying motion recognition and support
in body-weight training [4], which is a basic sports activity,
by using IMUs. We clarified that attaching IMUs to the wrist
and waist can recognize training type with high accuracy.
In this way, utilization of IMUs has great potential in the
analysis of sports performance [5]. In the near future, IMU-
based sports performance analysis is expected to be widely
adopted to various sports fields. Since IMUs have already been
widely used in smartphones and smartwatches, even amateur
sports can easily benefit from IMU-based sports performance
analysis. However, in the field of Kendo, which is a traditional
sport in Japan, only discussions on data obtained by a pressure
sensor pasted to the grip of the Shinai differing among players
have been done [6].

In this paper, we focus on Kendo and propose a novel
activity recognition approach by using a wrist-worn sensor.
Kendo is a kind of combat sports that players who wear
protective gear strike and thrust at each other in predetermined
places by the Shinai. Strikes-thrusts activities consist of 4
types: Men, Tsuki, Do, and Kote. In Kendo, Ki-ken-tai, which
is harmony between spirit, Shinai handling, and overall body
movement during striking, is very important to gain a point.
Therefore, it is necessary to master each strikes-thrusts activity
perfectly in order to improve skill in Kendo.

One of the best ways to improve Kendo skills is to practice
swinging action. Swing practice can help to understand the
body movement required for an accurate strikes-thrusts activ-
ity. At this time, it is better not to do it by oneself, but to get
advice based on objective information from a coach and other
players. However, in actuality, it is difficult for each student
to get sufficient advice for each activity because the coach
instructs multiple students. This problem causes deterioration
in practice efficiency and motivation. Furthermore, practicing
with the wrong forms and actions may become a cause of
injuries.

The objective of this study is to realize a novel support
system which allows players to perform effective Kendo
practice that improves practice efficiency and performance
alone, by using wearable IMU devices. As a first step, we
propose a strikes-thrusts swing motion recognition method.
Specifically, we collected the inertial sensor data from 6
subjects. In our experiment, IMUs are attached on the body
(Right Wrist, Waist, Right Ankle) and Shinai (Tsuba and
Saki-Gawa). Moreover, we created a classifier for strikes-
thrusts activity from the collected data set (1,440s) from 6
subjects. We first classified strikes-thrusts activities consisting
of 4 general types, Men, Tsuki, Do, and Kote, followed
by further classification into 8 detailed types. We achieved
90.0% of F-measure in the case of 4-type classification and
82.6% of F-measure in the case of 8-type classification when
learning and testing the same subjects data of only Right
Wrist. Further, when adding data of sensors attached to Waist
and Right Ankle, we achieved 97.5% of F-measure for 4-type
classification and 91.4% of F-measure for 8-type classification.
As a result of leave-one-person-out cross-validation from 6
subjects to confirm generalized performance, in the case of 4-
type classification, we achieved 77.5% of F-measure by using
only 2 IMUs (Right Wrist and Shinai Tsuba).
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(a) Men (b) Tsuki

(c) Do (d) Kote

Fig. 1: Strikes-thrusts activities

II. RELATED WORK

Sports biomechanics using information technology provides
the best tool for sports activity analysis and a monitoring
system [1]. Several methods for sports biomechanics have been
proposed and those can be classified into two approaches: A)
a camera-based method that analyzes images of sports activity
taken by the camera; B) a sensor-based method that analyzes
sensor data obtained by an IMU attached to a body part.

A. Camera-Based Method

Since the camera-based method can measure without attach-
ing any devices on the body, it is one of the best methods in
sport analysis. There is an optical motion capture system [7]
which is used for measurement of high-speed activity of sports
and DLT (Direct Linear Transformation) method [8] using a
digital video camera. These methods are frequently used for
more accurate measurement. However, as these methods are
large-scale and expensive, the measurement range is limited,
and detailed points such as blind spots cannot be measured
using these methods.

B. Sensor-Based Method

There are many studies that analyze activity during sports
by using IMUs and provide effective feedback to the players
so that they can practice efficiently. Blank et al. [9] attached in-
ertial sensors to table tennis rackets and recognized 8 different
basic stroke types using collected data from 10 amateur and
professional players. Kosmalla et al. [3] proposed a system that
automatically recognizes the route of climbing by using IMU
devices placed on both wrists. James et al. [10] analyzed Men,
which is the most basic strikes-thrusts activity, by attaching an
accelerometer at the Saki-Gawa end of the Shinai. As a result,
they reported that the accelerometer can quantitatively evaluate
that difference in swing characteristics between beginners and
professionals. However, they did not measure other strikes-
thrusts activities and did not recognize that activity by machine
learning.

Fig. 2: The names of striking positions (classification labels)

III. STRIKES-THRUSTS ACTIVITY RECOGNITION

In this section, we propose an automatic strikes-thrusts
activity recognition by using IMUs with an aim to improve
practice efficiency and performance.

A. Overview

The final goal of this research is to realize a Kendo moni-
toring system that can recognize the strikes-thrusts activity of
the swing by using IMUs and give feedback for improvement.
As a first step towards this goal, this paper focuses on the
recognition of strikes-thrusts activity during the swing.

B. Target Activity

Fig. 1 shows 4 basic strikes-thrusts activities, that is, the
target activities in this research. The names of the basic strikes-
thrusts activities are Men, Tsuki, Do(dō), and Kote, and the
explanations of these are as follows.
•Men

Men is the most basic strike activity, where the
player strikes the opponents head with the Shinai.
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Fig. 3: The positions of IMUs attached on the body and Shinai

(a) Acceleration

(b) Gyroscope

Fig. 4: An example waveform of Kendo activity

Further, there is a strike to the right or left side of
the opponents head.

•Tsuki
Tsuki means to thrust to the opponents throat with
the pointy end of the Shinai.

•Do
Do is the strike activity to hit the opponents upper
body with the Shinai. In principle, striking the right
side of the body is mainstream in Kendo, but players
can also strike the left side of the body.

•Kote
Kote is to strike the opponents the wrist with the
Shinai.

We define the names of striking positions as shown in Fig
2. These are also used as labels of classification in the latter
section.

C. Sensors Type and Position

The IMUs used in this study are the MPU-9250, a popular
IMU by InvenSense, embedded on a SenStick [11], which is

TABLE I: List of Features

Time Domain Features
Maximum, Minimum, Average, Standard Deviation, Sum,
Range (Maximum-Minimum), Variance, Median Abso-
lute Deviation, Interquartile Range, Kurtosis, Root Mean
Square, Correlation
Frequency Domain Features
Highest Magnitude, Total Energy, Highest Magnitude Lo-
cated, Entropy, Kurtosis, Skewness

TABLE II: Subjects Data

Subjects Age Weight(kg) Height(cm) Gender Career(year)
A 22 45.0 157 Woman 0
B 23 55.4 160 Man 0
C 23 70.0 171 Man 0
D 23 82.0 174 Man 2
E 23 62.0 177 Man 1
F 23 82.0 175 Man 0

a tiny multi-sensing board developed for recognizing strikes-
thrusts activity, that has 8 kinds of typical sensors (accelerom-
eter, gyroscope, magnetic, temperature, humidity, pressure,
light, UV). Also, it can record all the sensing data to on-
board memory at up to 100 Hz. Furthermore, it can send data
to a smart phone or PC via low-energy Bluetooth. We set the
sampling rate of IMUs to 100 Hz to accurately measure the
activities because strikes-thrusts activities are very fast. The
position of the IMU is an important issue in this research
because it has to avoid affecting the play and the position
will affect the recognition accuracy. In this study, we selected
five positions as shown in Fig. 3. Three IMUs are attached on
the body ((1) Right Wrist, (2) Waist and (3) Right Ankle), and
two IMUs are attached on the Shinai ((4) Shinai Tsuba and (5)
Shinai Saki-Gawa). Fig. 4 shows an example of acceleration
and a gyro waveform measured by the SenStick attached to
the Right Wrist.

D. Feature Engineering

We firstly calculated the composite data of each sensor by
using the following equation (1).

composite =
√
(x2 + y2 + z2) (1)

The window size used in this study is 3 seconds, although it
was empirically decided by observing the collected waveform.
We consider that 3 seconds of data includes enough data to
represent the characteristics of each strikes-thrusts activity.
After dividing the data, we calculated the various features
shown in TABLE I. For the time domain features, we extracted
thirteen kinds of features: Maximum, Minimum, Average,
Standard Deviation, Sum, Range (Maximum - Minimum),
Variance, Median Absolute Deviation, Interquartile Range,
Kurtosis, Root Mean Square, and Correlation. For the fre-
quency domain features, we extracted 6 kinds of features:
Highest Magnitude, Total Energy, Highest Magnitude Located,
Entropy, Kurtosis, and Skewness. The reason why we used
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these features is that previous work on context-aware systems
using inertial data have validated the effectiveness of these
features [12], [13].

IV. EXPERIMENT

A. Experimental Setup for Data Collection

To evaluate our proposed algorithm, we collected the actual
activity data from 6 subjects. Subjects received guidance from
an experienced person before performing and performed 10
sets of strikes-thrusts activities after setting the posture of
guard. Finally, we recorded a data set of 1,440 seconds (480
sets) from the subjects shown in TABLE II. Besides tracking
the subject sensor data, all strikes-thrusts activities were also
captured on video and were segmented based on the video
manually.

B. Strikes-Thrusts Activity Recognition

We use machine learning for recognizing strikes-thrusts
activities. To compare the accuracy, we adopted four kinds of
machine learning algorithms: Random Forest (RF), Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and
Neural Network (NN). Four-type classification labels ([i, ii,
iii], [iv], [v, vi], [vii, viii]) and 8-type classification labels
([i], [ii], [iii], [iv], [v], [vi], [vii], [viii]) are manually assigned
before adopting machine learning. Scikit-learn [14], a machine
learning library, was used for building a learning model.

In the experiments, we considered two cases: person de-
pendent (PD) and person independent (PI). In the PD case, 9
sets of data recorded with a particular subject were employed
for training, and the other 1 set of data was used for the
test. We evaluated each set to be test data once by cross-
validation. In the PI case, we performed leave-one-person-out
cross-validation, where in each fold, 5 persons were used for
training and the remaining one was used for the tests.

V. RESULTS & DISCUSSION

We discuss recognition results through A) comparison of
4 machine learning algorithms, B) comparison of each com-
bination of IMU positions, C) evaluation of versatility by
leave-one-person-out cross-validation, and D) feasibility of our
proposed system.

Fig. 5 shows the average of six subjects with the classifi-
cation accuracy results (F-measure) of strikes-thrusts activity
based on individual-only data using four different machine
learning algorithms (RF, SVM, KNN, NN). The horizontal
axis shows combinations of IMU positions. Machine learning
algorithms are differentiated by color.

A. Comparison of 4 Machine Learning Algorithms

In the PD case, we compared the performance of the 4
machine learning algorithms (RF, SVM, KNN, NN). Fig. 5 (a)
shows that Random Forest (RF) achieves the best accuracy,
94.0% (F-measure). In contrast, the worst accuracy was 67.9%
(F-measure) by Neural Network (NN). We observed the same
tendency in the case of 8-type classification. Therefore, we
confirmed that Random Forest (RF) is effective as a machine

learning algorithm to recognize strikes-thrusts activity accu-
rately.

B. Comparison of Each Combination of IMU Positions

Since our final goal is to pervasively support Kendo players
with just the wrist-worn sensor, it is necessary to recognize a
strikes-thrusts activity when only sensors are attached to the
body with the same accuracy as when sensors are attached
to the Shinai. We first compared the recognition accuracy of
the sensor attached to the Shinai and the wrist-worn IMU. As
a result, in the case of an IMU attached on the Shinai only,
we achieved Shinai Tsuba (ST): 92.5% (F-measure) and Shinai
Saki-Gawa (SS): 93.9% (F-measure) with 4-type classification
and Shinai Tsuba (ST): 85.6% (F-measure) and Shinai Saki-
Gawa (SS): 83.7% (F-measure) with 8-type classification.
Next, for the case when an IMU is attached on the Right
Wrist (RW) only, our proposed algorithm achieved 90.0% (F-
measure) in the case of 4-type classification and 82.6% (F-
measure) in the case of 8-type classification. Therefore, we
found that the wrist-worn sensor can recognize strikes-thrusts
activity with almost the same accuracy as the sensor attached
to the Shinai. We investigated the recognition accuracy of
the strikes-thrusts activity for the combination of the wrist
sensor and other body sensors. As a result, for the case
when an IMU is attached to Right Wrist and Waist (W), our
proposed algorithm achieved 94.6% (F-measure) in the case
of 4-type classification and 88.9% (F-measure) in the case of
8-type classification. And, as a result, in the case when IMUs
are attached on the Right Wrist and Right Ankle (RA), the
proposed algorithm achieved 95.6% (F-measure) in the case
of 4-type classification and 88.5% (F-measure) in the case of
8-type classification. Further, when IMUs are attached on the
Right Wrist, Waist and Right Ankle, the proposed algorithm
achieved 97.5% (F-measure) in the case of 4-type classification
and 91.4% (F-measure) in the case of 8-type classification.
Therefore, we clarified that if other sensors are combined with
the wrist sensor, the accuracy will be further improved.

C. Results of Leave-One-Person-Out Cross-Validation

We evaluated the recognition accuracy of strikes-thrusts
activity by leave-one-person-out cross-validation to confirm
generalized performance. We used Random Forest (RF) which
has the best performance in Section V-A as a machine learning
algorithm. Also, we optimized the parameters of Random
Forest (RF) by grid search. TABLE III and IV show the results
of leave-one-person-out cross-validation. In the case of 4-type
classification, the combination of the Right Wrist (RW) and
Shinai Tsuba achieved the best accuracy, 77.5% (F-measure).
Fig. 6 (a) shows a confusion matrix of the combination of
Right Wrist and Shinai Tsuba (ST). This result was the same
as the combination result as in Section V-B. In the case of
8-type classification, Shinai Tsuba achieved the best accuracy,
62.2% (F-measure). Fig. 6 (b) shows a confusion matrix of the
Shinai Tsuba. On the other hand, the accuracy with sensors
attached only to the body is relatively low. We consider that
the reason for low accuracy is individual differences caused by
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(a) 4 types classification

(b) 8 types classification

Fig. 5: Strikes-thrusts activity recognition result by F-measure for each SenStick position and machine learning algorithm

TABLE III: Four-type classification results by F-measure by leave-one-person-out cross-validation

Label RW RW+W RW+RA RW+ST RW+SS RW+W+RA RW+ST+SS ST SS ST+SS
1,2,3 68.6% 62.0% 53.9% 77.6% 76.6% 51.5% 74.6% 68.0% 59.7% 67.0%

4 12.1% 0.00% 25.5% 85.5% 74.8% 29.6% 68.4% 62.7% 63.9% 64.5%
5,6 85.8% 83.8% 85.1% 89.6% 90.8% 81.5% 96.2% 85.2% 81.8% 81.1%
7,8 52.4% 41.9% 37.0% 61.2% 53.3% 36.1% 63.7% 54.8% 42.6% 56.9%
avg. 60.8% 54.6% 53.8% 77.5% 74.0% 52.4% 76.4% 68.3% 61.4% 67.0%

fact that subjects included inexperienced persons. Therefore,
we confirmed that if we performed recognition based only on
personal data, we can recognize the strikes-thrusts activity with
high accuracy as in Section V-B. However, due to individual
differences in activity, the accuracy of leave-one-person-out
cross-validation decreases.

D. Feasibility of our proposed system

Through the evaluation, we confirmed that the sensor com-
bination of RW+ST achieved good accuracy for both 8-type
and 4-type classification. Since smart watches such as the
Apple Watch have already become popular, the sensor on the
wrist is feasible. On the other hand, there are no Shinai in
which sensors are embedded in the current market. However,

in different sports such as a tennis, some sensor-embedded
rackets (Babolat Play1, Smart Tennis Sensor2) have already
been sold in the commercial market. Therefore, there is a
possibility that a sensor-embedded Shinai will be released in
the future. If so, our proposed system will work well and we
can expect that data can be collected from various users.

VI. CONCLUSION

In this paper, we focused on Kendo, which is a traditional
sport in Japan, and proposed a strikes-thrusts activity recog-
nition method using a wrist-worn sensor towards a pervasive

1Babolat Play : http://en.babolatplay.com/
2Smart Tennis Sensor : https://www.sony.com.au/microsite/tennis/
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TABLE IV: Eight-type classification results by F-measure by leave-one-person-out cross-validation

Label RW RW+W RW+RA RW+ST RW+SS RW+W+RA RW+ST+SS ST SS ST+SS
1 34.3% 24.8% 40.0% 41.4% 56.5% 34.8% 59.3% 47.2% 46.4% 44.8%
2 18.8% 17.6% 23.5% 28.9% 49.0% 19.8% 49.0% 52.3% 30.6% 44.7%
3 39.6% 25.8% 26.0% 34.0% 33.7% 17.5% 29.8% 34.5% 31.1% 29.7%
4 35.0% 28.8% 37.8% 73.1% 64.2% 20.3% 69.6% 88.9% 58.7% 60.7%
5 68.6% 75.4% 57.4% 86.2% 80.0% 50.9% 93.2% 90.2% 70.2% 83.8%
6 83.3% 85.3% 74.6% 88.4% 80.0% 82.7% 91.3% 82.6% 67.2% 68.5%
7 17.9% 22.4% 22.2% 48.2% 49.0% 15.8% 64.2% 63.1% 44.2% 57.9%
8 27.7% 23.3% 18.9% 30.9% 39.7% 20.0% 32.4% 38.9% 25.8% 25.9%

avg. 40.6% 37.9% 37.5% 53.8% 56.5% 32.7% 61.0% 62.2% 46.8% 51.9%
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Fig. 6: Confusion matrix of leave-one-person-out cross-
validation

Kendo support system. We collected the inertial sensor data
from 6 subjects who attached IMUs on their Right Wrist,
Waist, Right Ankle. Also, we collected the same data from
Shinai where 2 IMUs were attached on Tsuba and Saki-
Gawa. We first classified strikes-thrusts activities consisting
of 4 general types, Men, Tsuki, Do, and Kote, followed by
further classification into 8 detailed types. We achieved 90.0%
of F-measure in the case of 4-type classification and 82.6% of
F-measure in the case of 8-type classification when learning
and testing on the same subjects data of only Right Wrist.
Further, when adding data of sensors attached to the Waist
and Right Ankle, we achieved 97.5% of F-measure for 4-type
classification and 91.4% of F-measure for 8-type classification.
Therefore, we clarified that if other sensors are combined with
the wrist sensor, the accuracy will be further improved. As a
result of leave-one-person-out cross-validation from 6 subjects
to confirm generalized performance, in the case of 4-type clas-
sification, we achieved 77.5% of F-measure using only 2 IMUs
(Right Wrist and Shinai Tsuba). Therefore, if we perform
recognition based only on personal data, we can recognize
a strikes-thrusts activity with high accuracy. However, due to
individual differences in activity, the accuracy of leave-one-
person-out cross-validation decreases. As part of future work,
we aim to collect more data obtained from experienced persons
whose forms are correct and stable for improving recognition
accuracy and covering a diverse demographic population.
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