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Abstract— With the capabilities and autonomy of smart 

watches constantly increasing, there is the need for introducing 

applications which can exploit their full potential, establishing 

the use of smart watches in our daily routine. The field of 

personal safety and security provides an excellent basis over 

which applications can be developed, enabling the use of wrist 

worn devices as tools for easy, discreet and efficient reporting of 

incidents or suspicious behavior. However, current practices in 

report creation using smart watches rely on methods and 

interfaces, such as taking pictures and writing text, without 

taking into account gesture-based input. In this paper, we 

present the design a smart watch-based approach, which utilizes 

a Deep Learning model, to recognize specific user gestures that 

could result in reporting hazardous situations and could alert the 

authorities for assistance. We evaluated the performance of the 

model by training it to distinguish 5 predefined gestures from a 

set of random gestures performed by 9 subjects wearing a smart 

watch on their dominant arm. Our Deep Learning model 

surpasses the performance of conventional classifiers that rely on 

hand-crafted features and produced gesture recognition 

accuracies above 98% in 26,061 motion signal samples by fusing 

the automatically extracted features of 3-axial accelerometer 

signals. We conclude by discussing the related issues we have 

encountered by using the proposed application in real-time use 

and providing future directions. 
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public safety 

I. INTRODUCTION 

The Internet of Things (IoT) is considered to power the 
next “Industrial Revolution”, as the number of IoT devices is 
expected to reach 50 billion by 2020 [1] and their applications 
will enhance the way people live, travel, communicate and 
entertain. The IoT paradigm will turn into reality Mark 
Weiser’s quote “The most profound technologies are those that 
disappear. They weave themselves into the fabric of everyday 
life until they are indistinguishable from it” [2]. However, in 
order to develop useful applications, the raw IoT data have to 
be collected and analyzed in a way that useful information can 
be extracted from them. In other words, the IoT applications 
have to become situation-aware.  

Situation Awareness (SA) is defined as “the perception of 
the elements in the environment within a volume of time and 
space, the comprehension of their meaning, and the projection 
of their status in the near future” [3]. In other words, SA refers 
to the possibility of knowing deeply the current situation by 

observing and analysing the surrounding environment and to 
foresee every change that can happen. Thus, SA is critical 
when it comes to public safety [4], and the related 
countermeasures in crisis situations is a key factor of a 
successful work of first responders and Law Enforcement 
Agents (LEAs). The more the situation is rich of useful 
information, the more the first responders and LEAs can act 
rapidly in properly responding and mitigating the risk. 

One of the main computer science branches that serves the 
IoT paradigm, is wearable computing. Wrist worn devices, 
such as smart watches and activity trackers, are equipped with 
a wide range of small embedded sensors capable of monitoring 
situation-aware information. To this end, there are several 
existing commercial mobile [5][6][7] and wearable [5] 
applications used for creating a report that may include 
pictures, text and the GPS coordinates of the users, aiming to 
minimize the LEAs response time and improve SA. 

 Nevertheless, these approaches are based on non-discreet 
ways for crime reporting, lack of automation and, in case they 
are not, demand from the users to be familiarized with the 
application [8]. Gestures could, definitely, be considered as a 
solution to this issue. However, when it comes to identifying 
the user’s activity (e.g., via hand gestures), the signals that are 
collected by motion sensors, such as 3-axial accelerometers 
and gyroscopes, must be preprocessed, segmented, transformed 
(e.g., feature representation) and, finally, classified using a 
machine learning algorithm [9]. On top of that, the feature 
extraction process by human experts is time consuming and, in 
some cases, not effective. Deep Learning (DL) algorithms can 
tackle this problem, since they have the ability to automatically 
extract features [10]. What is more, previous implementations 
of DL approaches applied to sensor-based human activity 
recognition and hand gesture recognition have outperformed 
past techniques based on hand-crafted features [11][12].  

Creating the ability to recognize hand gestures for incident 
reporting is the focus of our paper. In particular, the present 
paper introduces a hand gesture classifier for wrist worn smart 
devices, which tries to enhance the feeling of the users’ 
security, by giving them the ability to report incidents 
discreetly and instantly through the use of hand gestures. This 
way, citizens will be able to communicate with the LEAs, even 
when they are in a hazardous situation and they cannot call or 
shout for help. The contribution of our work can be 
summarized in the following:  
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• We implemented a novel hand gesture classifier based 
on a deep Convolutional Neural Network (ConvNet), 
and evaluated it by comparing it to machine learning 
techniques that are based on hand-crafted features. 

• We developed a smart watch and a smartphone 
application that could be used to collect motion data in 
the wild. 

• We built a hand gesture dataset containing 3-axial 
accelerometer, gyroscope and magnetometer signals 
consisted of 5 annotated gestures that can be extended 
by a wider set of gestures. 

II. RELATED WORK 

In this section, we report significant mobile/wearable 
techniques proposed in the literature that are based on machine 
learning techniques for improving public safety and not for 
detecting every day activities, such as smoking [13] and eating 
[14]. These works make use of motion sensors in order to 
classify the hand gestures, the activities performed by the 
users, or identify the situation they are in. 

Loeffler [15] presents the use of wearable sensors to 
recognize wrist movements that imply firearm movement in 
order to detect gunshots. Classification accuracy of 99.4 
percent is achieved according to his report when tested against 
a hold-out sample of observations. In a related work, the 
authors of [16], expand the firearm detection task by studying 
the problem of identifying various categories of firearms (i.e., 
handgun, rifle, shotgun) and recognizing whether a firearm is 
autoloaded or manual. 

The use of an intelligent accident detection and reporting 
algorithm is presented in [17]. A custom hardware module is 
used to transmit signals when an accident occurs, that can be 
used to determine the location of the accident. Car accidents 
detection is also described in [18], where the authors make use 
of a smartphone, in order to provide SA to emergency 
responders. Since distracted driving is one of the most 
significant dangers to road safety today, the authors in [19] 
introduce an algorithm for detecting it. In the experiment 
described in their paper, 16 adult participants were asked to use 
a driving simulator while wearing in their wrist a smart device 
equipped with an accelerometer and a gyroscope, achieving 
promising results. On the other hand, distraction from the 
pedestrian perspective is studied in [20], where a novel 
complex activity recognition framework was designed 
exploiting motion data from the users’ mobile and wearable 
devices. 

Another, well-investigated computer task is that of fall 
detection, which recognizes if a subject that carries a mobile 
(phone) or wearable device, has fallen. The consequences of a 
fall for elderly people may lead to their hospitalization and 
sometimes are fatal. However, fast assistance reduces the 
effects of a fall, so solutions in early detection of fall can have 
a significant impact. Some commercial wearable devices, such 
as GoSafe [21] produced by Philips, offer their users an 
emergency button in case they fall. Nevertheless, the elderly 
are not familiar with such technologies, while their use may not 
always be possible after a fall. As a result, many researchers 

have focused over the last few years on creating smartphone-
based fall detection applications [22]. In [23] researchers used 
the accelerometer, magnetometer and gyroscope sensors of a 
smartphone to achieve up to 100% for sensitivity and 93% for 
specificity, while [24] focuses on reducing false alarms using 
the accelerometer data of a smart watch. It should be noted that 
fall detection applications have a social aspect because they 
send alert messages, to people related to the fallen user via 
their social media accounts, but they are human-centric. In 
addition to this, recently, Apple watches introduced the ability 
to send a distress signal after detecting a fall and subsequently 
detecting immobility [25]. 

However, though the aforementioned approaches have 
promising results, they are targeting specific domains (e.g., 
crash accidents) and do not fully exploit the capabilities of 
understanding the situation in which the user is engaged, which 
in some cases could be life threatening, and/or could be 
requiring the communication with the proper authorities and 
LEAs. Furthermore, they do not offer the ability to proactively 
respond to situations, such as reporting of abnormal or 
suspicious behavior. In particular, humans are not considered 
as sensors but as an observable parameter in the monitored 
environment. Thus, we propose the use of gestures to 
understand a variety of actions, which could be linked to 
different situations or incidents, and if needed establish a 
discreet communication channel between the LEAs and the 
citizens. 

III. DATASET COLLECTION PROCEDURE AND APPLICATION 

For the data collection process, we developed a 
supplementary mobile application which togetherwith the 
smart watch application, was used to collect and annotate 
incoming motion data from the smart watch sensors and upload 
them on a server. The data collected include recordings of 3-
xial accelerometer, gyroscope and magnetometer sensors, 
along with a timestamp and a unique ID of the device. In 
addition, optional personal info of each subject like age, height 
the used wrist (i.e., left or right) were also collected. 

For the training process, we selected a set of five Gestures 
of Interest (GoI): 

• Reach for Wallet (RW): The user reaches and opens 
his/her wallet from his/her pocket (assumed to be 
placed in the back pocket of the trouser), using the 
hand with the wearable. 

• Look & Reach for Wallet (LRW): The user first taps 
several times his/her body, as if trying to locate where 
(in which pocket) the wallet is,and then (s)he reaches it 
and makes a move as if (s)he gives it to someone. 

• Hands Up (HU): The user raises his/her hands, acting 
like (s)he is under immediate threat (i.e., at gunpoint). 

• Distress Signal (DS): The user shakes quickly his/her 
hand a few times, with the hand pointing down. The 
gesture (similar to a tremor of hand), represents the 
anxiety that can be occurred under stressful situations. 

• Wave (W): The user acts like (s)he waves at someone. 
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At first, the user wears the smart watch and then, opens the 
mobile application where a screen is presented, asking the user 
to enter his/her info, as seen in Fig. 1a. After registering this 
information, the screen in Fig. 1b is presented, displaying the 
available for annotation gestures. On the bottom right of the 
screen, the connectivity with the smart watch is indicated, with 
the corresponding icon changing its color accordingly: green 
when a smart watch with the application is present and red 
when a smart watch is absent, or connection to the mobile 
phone is lost (i.e. out of reach), or doesn’t have the application 
installed. Tapping the gear on the bottom left allows the user to 
change his/her information at any time.  

By tapping the “START” button the user is able to start 
capturing random movements. In order to capture data for a 
specific move, the user has to tap one of the yellow buttons and 
make the relevant move with his/her hand (Fig. 1b). 
Meanwhile, the smart watch shows whether it is capturing the 
user’s gestures or not, and what gesture is currently capturing. 
There is also the option to start or stop capturing by tapping the 
appropriate button (Fig. 1c). When the user selects a gesture to 
capture, the screen changes and the capturing movement is 
shown along with two buttons (Fig. 1d). Through the use of the 
“Cancel” button, the user has the ability to discard the current 
gesture in case (s)he makes a wrong move. When the gesture is 
completed, the user taps the “OFF” button in order to annotate 
properly the data. If gesture capturing is enabled, the smart 
watch application gathers nine signals in the background (i.e., 
from the 3-axial accelerometer, 3-axial gyroscope and 3-axial 
magnetometer) and uploads them at periodic intervals to a 
server, through the mobile application. 

Finally, it should be noted that random movements (e.g., do 
computer work, walking, scratching head etc.) were also 
collected, constituting the sixth class in our classification 
scheme. The created Hand Gesture Recognition (HanGeR) 
dataset was segmented using a 5-second window and no 

overlap, leading to the creation of 26,061 samples 1  (i.e., 
discrete gestures). Nine subjects wore a Sony SmartWatch 3 
SWR50 [26] on the wrist of their preference and performed in 
total 1,543 RW, 1,518 LRW, 1,498 HU, 1,532 DS, 1,520 W 
and 18,450 random movements (R). The average sampling rate 
for the 3-axial accelerometer is approximately 200 Hz, while 
for the 3-axial gyroscope is approximately 186 Hz and the 3-
axial magnetometer is approximately 103 Hz. 

IV. DEEP CONVNET ARCHITECTURE 

This section describes in detail the architecture of the 
proposed deep ConvNet [27] that is used to identify the GoI, 
produced by a user/citizen wearing a wrist worn device. 
ConvNets have proven to be capable of automatically 
extracting the temporal local dependencies of time-series 
signals and researchers have proven that motion signals are 
correlated with each other [28]. Moreover, we take advantage 
of our previous work [29], where we proved that by processing 
separately motion signals to extract features from them and 
applying afterwards sensor fusion to the low-level extracted 
features, using a 2D convolution operation over them, more 
general activity/gestures patterns are discovered. Thus, we 
developed a deep ConvNet, which takes as input vertically 
stacked motion signals in order to exploit the semantics and the 
grid-like topology of the input data, in contrast with Fully 
Connected Neural Networks (FCNNs) [30].  

The product of a convolution operation is the summation of 
the elementwise multiplication between a part of the input 
tensor (receptive field) and a filter w. In particular, the ith 
product element of a discrete 1D convolution between the input 
array x and a 1D filter w equals: 

                                                           
1 https://consert.eee.uniwa.gr/datasets/ 

Fig. 1. a. Filling the additional info of the user that will wear the smart watch and whose data will be collected, b. the screen of the mobile application that 

will be used for the annotation of the data during the training phase of the machine learning model, c. The screens of the smart watch application, d. The 

screen in the mobile application that describes the current gesture. The captured data are recorded (and annotated) until the OFF button is pressed. 
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where l is the layer index, q is the activation map index, D is 

the total width of the filter w, and b is the bias term. While, the 
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where h is the total height of the filter w. 
The network hyperparameters were optimized by 

minimizing the cross-entropy loss function using the Adam 
optimizer [31]. The optimizer’s hyperparameter values were as 
follows: the learning rate was equal to 5x10−4, the beta1 equal 
to 0.9, beta2 equal to 0.999, and epsilon equal to 1E-08. 
Moreover, we set the batch size equal to 64 and the minimum 
number of epochs to 500, but the training procedure was 
automatically terminated if the best training accuracy had not 
improved after 100 epochs. 

In order to obtain subject dependent results, we used a 9-
fold cross-validation technique and split our dataset into 
training set containing 7 subjects, and validation set and test set 
containing 1 subject. The model that achieved the lowest error 
rate on the validation set was saved, and its filters were used to 
obtain the accuracy of the model on the test set. Finally, we 
normalized each sensor signal’s values by subtracting the mean 
value and dividing by the standard deviation. 

The final architecture of the developed ConvNet is as 
follows: 

• Layer 1: 16 1D convolutional filters with a size of 

1x15, followed by a ReLU [32] activation function, a 

strided 1D max-pooling operation [27] with size 1x8 

and a dropout [33] probability equal to 0.5. 

• Layer 2: 24 1D convolutional filters with a size of 

1x15, followed by a ReLU activation function, a 

strided 1D max-pooling operation with size 1x8 and a 

dropout probability equal to 0.5. 

• Layer 3: 32 2D convolutional filters with a size of 

3x15. This is followed by a ReLU activation 

function, a global max pooling operation [34] and a 

dropout probability equal to 0.5. 

• Layer 4: Dense layer with number of classes as 

output units, i.e., W4 has the shape 32x6, followed by 

a softmax activation function. 

V. EXPERIMENTAL RESULTS 

The experiments were executed on two computer 
workstations in order to accelerate the training process. The 
first one is equipped with a NVIDIA GTX Titan X GPU, 
featuring 12 gigabytes RAM, 3072 CUDA cores, and a 
bandwidth of 336.5 GB/s, while the second with a NVIDIA 
GTX 1080 Ti GPU featuring 11 gigabytes RAM, 3584 CUDA 
cores and a bandwidth of 484 GB/s. We used Python as 
programming language, and specifically the Numpy library for 
matrix multiplications, data preprocessing and segmentation, 
scikit-learn for training the conventional machine learning 
algorithms and the Keras high-level neural networks library 
using as backend the TensorFlow library. In order to accelerate 
the tensor multiplications, we used CUDA Toolkit in support 
with the cuDNN, which is the NVIDIA GPU-accelerated 
library for deep neural networks. Both workstations had 16.04 
Ubuntu Linux operating system. 

The proposed DL algorithm was evaluated by comparing 
its performance to conventional classifiers: Support Vector 
Machines (SVM), Logistic Regression (LR), k-nearest 
neighbors (k-NN), Decision Tree (DT), Random Forest (RF) 
and FCNN. Due to the fact that too many features in some 
cases decrease the accuracy [19][35] and too few features may 
increase the model’s bias, we selected to extract a limited set of 
time-dependent features from the accelerometer signals, which 
have been proven to be more robust and efficient than 
frequency-dependent features in context recognition [9], to 
feed the algorithms. Table I presents them along with a short 
description. 
 The evaluation strategy we adopted was twofold: 1) 
evaluate the performance of our model in an almost perfectly 
balanced dataset that contained only the 5 GoI and 2) evaluate 
the performance of our model in a more realistic scenario 
where random movements were included. The results of the 
former are illustrated in Fig. 2. The proposed deep ConvNet 
achieved the highest performance in terms of accuracy 

Fig. 2. Plots diplaying: a) the performance, in terms of accuracy, of the selected machine learning algorithms, b) the confusion matrix of the ConvNet and c) 

the accuracy, precision, recall and F1_score metrics per subject of the ConvNet model for the 5 GoI 
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(~93.56%). Plotting the confusion matrix, it is obvious that a 
lot of LRW gestures were misclassified as RW. Consequently, 
the RW gesture had the lowest precision and the LRW the 
lowest recall. The radar (spider) chart displays in two-
dimensions, the per subject performance of the ConvNet using 
four metrics, the accuracy (red color), precision (blue color), 
recall (purple color) and F1_score (gray color); this chart 
illustrates if our model generalizes well (i.e., achieves similar 
performances for all the subjects), which is accomplished with 
the exception of subject 8 that has the lowest results (F1-score: 
90.49%), in contrast to subject 4 that has the highest (F1-score: 
99.31%). 

TABLE I.  SELECTED FEATURES 

Feature Description 

Mean Average value 

Min Minimum value 

Max Maximum value 

Median Median value 

Standard 

deviation 
Measure of dispersion 

Skewness The degree of asymmetry of the signal distribution 

Kurtosis The degree of “peakedness” of the signal distribution 

  

It should be noted that the machine learning algorithms had 
as input only the 3-axial accelerometer signals. The motion 
sensors (gyroscope and accelerometer) that Sony SWR50 is 
equipped with, are on separate modules, and are not 
synchronized, while they have different sampling rate and 
suffer from sampling rate instability (regularity of the timespan 
between successive measurements). As a result, fusing all the 
signals together resulted in acquiring worse results (about 2% 
decrease in terms of accuracy). In addition to this, the network 
consists of 32,566 and is considered to be very light-weight if 
we take into consideration the fact that in our previous work 
PerceptionNet [29] contains ~ 485,136 parameters and 
SqueezeNet [36] uses 421,098 parameters for inference. 

Regarding the second evaluation strategy, the proposed 
deep ConvNet achieved the highest accuracy (~98.73%), as it 
is displayed in Fig. 3. Interestingly, the accuracy of our model 
increased over 5% by adding the random movements (i.e., 
increasing the dataset size using unlabeled gestures), while the 
rest of the models improved only by 1%. Furthermore, due to 
class imbalance (i.e., random samples are more than the other 
gestures) we can see in the radar chart that the precision, recall 
and F1-score metrics differ a lot from that of accuracy, 
however, their values are, also, promising (precision: 97.15 %, 
recall: 97.31% and F1-score: 97.16%).  

By plotting the confusion matrix we see that the model, 
again, struggles to distinguish the RW gesture from the LRW 
gesture. Moreover, it misclassified a lot of W samples as DS; 
this misclassification could have been solved if the gyroscope 
signals were also used, since DS gesture contains a lot of 
rotational movement. Furthermore, it should be noted that 49 
out of 7,611 GoI were classified as random, which can be 
translated into the fact that once per 155 dangerous situations 
an incident report is not sent to the platform. Finally, and we 
obtained 78 false positive incident reports (total number of 
misclassified random gestures). This means that a smart watch 
application that would run in real-time and use a 5 second time 
window with 80% overlap it will falsely upload a report to the 
platform every 4 minutes and 15 seconds. Nonetheless, this can 
be addressed by including the GPS coordinates in the report or 
providing the ability of cancelling the report before it is sent 
(i.e., a prior warning through a notification on the smartwatch). 

VI. CONCLUSION 

In the current paper, we proposed and evaluated a gesture-
based incident reporting application that could be deployed on 
smartwatches using a DL model. This technique allows users 
to use gestures as interface in order to alert the LEAs for 
hazardous events through the automatic preparation and 
sending of notifications triggered by different gestures. The 
results we obtained using the hand gesture recognition dataset 
that we built, were very encouraging, since the DL model 
managed to produce accuracies above 98% and F1-score over 
97% by using a late sensor fusion technique to automatically 
extract features of 3-axial accelerometer signals. It is of course 
important to highlight that our proposal comes not to replace 

Fig. 3. Plots diplaying: a) the performance, in terms of accuracy, of the selected machine learning algorithms, b) the confusion matrix of the ConvNet and c) 

the accuracy, precision, recall and F1_score metrics per subject of the ConvNet model for the 5 GoI and the random movements. 
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the existing methods for emergency reports but rather to 
provide a method for sending more elaborate reports. We argue 
that gesture-based applications will be broadly deployed to 
wrist worn devices in the near future to enable discreet and 
remote communication. 

Future steps target at testing the proposed technique in a 
real-world scenario while improving the model’s applicability 
and the deployment of the DL model in commercial smart 
watches, even if they do not rely on the same OS and their 
sensors have different sampling rate. Moreover, in order to 
increase the performance, the use of other motion signals (e.g., 
Magnetometer) and that of a trigger gesture (such as in speech 
recognition task) before executing the GoI should be 
investigated. Finally, one-shot learning techniques could be 
examined by exploiting the high-level features that are 
extracted after the global max pooling layer as embeddings, in 
order to give the users, the capability to add their own gestures. 
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