PerLS'19 - Third International Workshop on Pervasive Smart Living Spaces

Improving Pedestrian Dead Reckoning using Likely
Paths and Backtracking for Mobile Devices

Fabian Ho6lzke, Johann-P. Wolff, Christian Haubelt
Institute of Applied Microelectronics and CE
University of Rostock
Rostock, Germany
Email: fabian.hoelzke2 @uni-rostock.de

Abstract—Pedestrian Dead Reckoning is a method estimating
a persons path from a known starting point based on length and
direction of all performed steps. Measuring these parameters, e.g.
using inertial sensors, introduces small errors that accumulate
quickly into large distance errors. Knowledge of a building’s
model may reduce these errors as it can be used to keep the
estimated position from moving through walls and onto likely
paths. Common indoor localization approaches like particle filters
track, verify and re-sample several hundred positioning estimates
with each user step, resulting in a comparably high computational
load. In this paper, we use backtracking to improve an existing
localization system tracking a single localization estimate using
a foot-mounted inertial sensor and a smartphone. We show
how backtracking a single localization estimate can improve the
accuracy of indoor positioning systems and discuss restrictions
and disadvantages of this approach. Our quantitative results
show a reduction of the positioning error by up to 75% and
an average endpoint accuracy of 1.91% of the travelled distance
with an average computation time of 256.7..s on a 2014 Motorola
G2 smartphone.

I. INTRODUCTION

The utility of smart home applications is greatly enhanced
by location based services (LBS). Today, LBS are most
commonly provided by tracking a users position via GPS,
providing meter accurate localization when moving outdoors.
Indoors however, GPS fails to deliver an adequate estimation
of user positions. In this paper, we propose a method for indoor
positioning that works especially well in large buildings. One
possible application could be retirement homes: Here the
indoor positioning enables services like tracking of residents
and staff and routing staff to the residents current position.
Residents may also be assisted by the automatic activation of
smart home features if they enter their living spaces or be
relieved of turning off appliances and devices when leaving.
There exist approaches for indoor localization based on the
buildings existing infrastructure like WiFi fingerprinting [1],
[2], [3] or based on additional infrastructure like Bluetooth
beacons [4], [S]. These approaches require extensive setup
and maintenance of a signal strength database and, in the
case of beacons, monetary investment in hardware. These
beacons however may suffer from unclear long term usability
because of a lack of standardization regarding the transmitted
information [6], [7].

An alternative to these approaches is Pedestrian Dead
Reckoning (PDR) [8], [9], [10]. It uses wearable hardware
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to count steps and estimate the step length and orientation.
The users position is then estimated by stringing together
consecutive steps. As these measurements are never perfect,
small errors add up with each step, degrading the long-term
accuracy of this approach. To limit the accuracy degradation of
PDR, additional positioning technologies may be used to fuse
multiple independent localization sources [11], [12]. However,
infrastructure based methods may not be cost effective because
of the required setup and maintenance. Another approach is
using a building map. For example, measured steps that violate
a plausibility check (i.e. crossing walls, leaving a known path)
are unlikely and may be corrected to a more plausible nearby
position [13], [14].

Particle filter based PDR methods use this approach. A
cloud of particles represents possible user positions and each
particle is propagated semi-randomly with each step. The
cloud of particles then models the uncertainty of the localiza-
tion after each step. Particles are weighted according a given
set of rules. For example, a particle that crosses a wall repre-
sents a highly unlikely user trajectory and may be discarded
and re-sampled. This discards unlikely user trajectories and
leaves only plausible positions. The users position is finally
calculated as a function of the remaining weighted particles
[15], [16]. A drawback of this method is the comparably
high computational complexity due to the propagation and
validation of several hundred particles per user step, limiting
its practicality on mobile and wearable devices.

The approach presented in this paper is based on the
work described in [17]. Here, the users position is directly
propagated by the measured step length and direction. If a
measured step is found as invalid (i.e. crossing a wall) the
users position is corrected to the nearest plausible location
based on the last step measurement. However, if this corrected
position is not the true user position, the localization is actively
degraded by the correction method. In extreme cases, this
leads the user trajectory to a dead end, rendering any further
user tracking useless. In this paper, we present a backtracking
method to reverse faulty correction decisions and reexamine
past measurements of the user trajectory to find the most
plausible current user location.

The paper is structured as follows: In Section II, related
work is explored and the previous work, on which the pre-
sented method is based, is described and discussed. Following
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in Section III, a method for backtracking of past navigation
decisions is presented and explained in detail. Section IV
then describes the experiment used to validate the method,
results and implications are given in Section V. In Section VI,
conclusions are given and future work is outlined.

II. RELATED WORK

In addition to the related work already presented in Section
I, we want to describe a similar approach in more detail: The
use of backtracking in conjunction with a particle filter is
presented in [15]. In this approach, every particle inherits a
predefined number of preceding positions. If a particle crosses
a wall, it is re-sampled and re-evaluated a few times. If it is
still invalid, it and its predecessors are deleted. Afterwards,
the past user positions are computed again and the deleted
particles are re-sampled at the new position. The authors use
2000 particles, save 20 to 60 past particle positions and report
a 50% decrease in positioning error compared to traditional
particle filtering. The average error at the end position is
given as 1.50m with an escape plan map compared to 2.01m
without backtracking. The propagation and repeated validation
of 2000 particles suggests a high computational complexity
of this approach. Additionally, multiplying past positions and
particle count, the management of 40.000 to 120.000 particle
positions is required. This may limit the methods practicality
on mobile devices. Finding a valid trajectory may be a matter
of chance with particle filters: Although highly likely, it is
not guaranteed that a particles trajectory resembles the users
path through a building. Errors or losses in measurement, for
example, may introduce large deviations between the sampled
and true user trajectory. A less probabilistic approach may lead
to more reliability in indoor positioning.

A. Correcting PDR using likely and unlikely paths

In [17], we describe a method of step wise PDR correction
by map data. The correction algorithms include Orientation
Angle Correction (OAC), redirection when intersecting walls
(Correction using Wall Information - CWI) and forcing the
user position on known paths (Correction using Path Infor-
mation - CPI). These methods chose likely map features to
correct the users position, e.g. the nearest door if a wall is
intersected or the nearest path. A schematic showing errors
that are corrected by CWI is shown in Figure 1: Intersections
with walls in shallow angles are reflected back into the room,
intersections with acute angles are either lead around walls or,
if no opening is nearby, set in front of the intersection. If a
minor fraction of the step vector is intersecting the wall in an
acute angle, the user position is also set in front of the wall.

The results presented in [17] show that the combination
of the correction methods work well regarding short routes
with a length of up to 100 m and low complexity. On longer
paths however, the accuracy is on average severely degraded. A
detailed analysis of the data reveals that a fraction of sampled
user trajectories show a significant deviation from ground
truth at specific points of the route. There are 5 and 11 such
trajectories on Routes 3 and 4 respectively. In these instances

Figure 1: Reflecting, redirecting and shortening steps by CWI

the correction algorithms chose the most likely but wrong map
feature to correct a sampled step - subsequent user steps are
severely misplaced.

The benefit of combining CWI and CPI is not obvious from
the accuracy plots. However, as illustrated in Figures 2a and
2b, we argue that a combination of both methods decreases the
possibility intersections with walls due to positioning drift and
therefore reduces the chance of erroneously entering spaces
leading to dead ends. Disallowing the user trajectory to drift
through walls reduces the chance of erroneously selecting
paths that may not be located in the users vicinity. For this
reason we use a combination of both methods in conjunction
with backtracking.

(a) Using CWI without CPI may lead to positioning errors

(b) Combining CWI and CPI reduces CWI-specific errors
Figure 2: Benefit of combining CWI and CPI

CWI is also identified as a source of occasional erroneous
corrections: Occasionally, the wall-opening chosen by CWI to
correct the user position is incorrect, leading to large positing
errors or dead ends. This highlights the need to backtrack
past correction choices to find the true user position. Our
backtracking method is presented in the following sections.

III. METHOD

The backtracking method is structured in three parts: Tra-
jectory validation, finding alternative trajectories and selecting
an alternative. The following sections III-A, III-B and III-C
describe these steps in detail. The general backtracking control
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Figure 3: Exemplary backtracking of an invalid trajectory in four steps

flow is illustrated by an example in Figure 3. Here, a user
trajectory through a building is shown as a black line from top
to bottom or start to current position respectively. Alternative
paths are indicated by blue dots and branches to the right.
The resulting structure is similar to a search tree. The search
for the correct trajectory may be understood as a depth-first
search in this tree of possible trajectories.

The example of Figure 3 illustrates the search for a a valid

user position in four steps:

1) A trajectory is recognized as invalid. The last step with
a possible alternative correction choice is searched (e.g.
another nearby door after an acute wall-intersection).
This step is referred to below as the candidate step.

2) At this position, alternative corrections and the resulting
trajectories are determined and validated with raw data
of the following steps. If a valid alternative is found,
backtracking stops.

3) No valid alternative is found yet. The candidate step with
possible alternative corrections is searched further up
the list of past steps. Here, three alternatives are found.
One trajectory is valid and two are invalid. One invalid
trajectory however contains another candidate step with
other possible correction choices, thus allowing further
backtracking.

4) The invalid sub trajectory is backtracked and another
valid trajectory is found.

Two valid trajectories are found in this example. The
procedure to choose the trajectory that is the most plausible
is described in Section III-C. The following Section III-A
describes the trajectory validation method.

The corresponding pseudocode is listed in Algorithm III.1.
The procedure receives four parameters: unplausibleSteps,
stepList, level and holdOf fCnt. unplausibleSteps is a
list of invalidated steps, that need to be re-evaluated with
alternative corrections. stepList is the list of saved steps that
may be used to backtrack further. level is the current level
of recursion. This parameter limits the extent of the search

within sub-trees of alternative trajectories. holdO f fCnt sets
the minimum number of steps that are re-evaluated. This
parameter ensures a meaningful minimum number of steps
are re-evaluated. The call FINDBTSTEP(...) returns the can-
didate step with alternative corrections. The call BTWALL(...)
returns the best scoring alternative trajectory starting from the
candidate step. This procedure will itself call BACKTRACK(...)
to recursively search sub-trees as shown in step 4 of Figure
3. The deepest allowed recursion level is specified by the
global parameter maxBtLevel. If an alternative is found or
the stepList is traversed too far back, backtracking stops. If
no alternative is found, the next candidate step is searched.

Algorithm III.1 Backtracking: Search for alternative trajecto-
ries
1: procedure BACKTRACK(unplausibleSteps, stepList,
level, holdO f fCnt)
btCorrSteps < 0

2
3: backtracking < true

4: btEntryldx = stepList.indexO f(unplausibleSteps|0])
5:

6

7

btStepldx < FINDBTSTEP(stepList, bt Entryldz)
while backtracking A level < maxBT Level do
if btStepldx > holdof fCnt then
> Found a candidate step
> Search the best alternative trajectory at this point

8: btCorrSteps < BTWALL(stepList, btStepIdx, level)
9: end if
10: if btCorrSteps # () then
> Alternative found, exit loop and recursion
11: backtracking < false
12: else
> Find next candidate
13: nextBtIdx < FINDBTSTEP(stepList, btStepldx — 1)
14: if nextBtIdxz > holdof fCnt A
(bt Entryldz — nextBtldz) < maxzBtSteps then
15: btStepldr < nextBtldx
16: backtracking < true
17: else
> No more candidates
18: backtracking < false
19: end if
20: end if

21: end while
22: return btCorrSteps
23: end procedure
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A. Validating the current trajectory

In order to provide useful indoor positioning it is essential
to recognize trajectories that are unlikely early on and with
low computational effort. We propose a trajectory validation
for every new step vector with two easy to compute rules:

o Two corrected steps are consecutively intersecting walls.
o The difference in orientation between a new step vector
from raw data and its correction is greater than 90°.

Intuition dictates that a trajectory that crosses a wall is
invalid. However, the correction method CWI relies on in-
tersections with walls and already handles these instances.
Instead, multiple consecutive intersections with a wall indicate
a need to backtrack. Here two scenarios that are anticipated:
In the first scenario, there is no passage nearby: The first and
second step are set in front of the wall. This case indicates
a dead end: Past corrections need to be evaluated to find
an alternative trajectory. An example of this is illustrated by
Figure 4a. In the second scenario, there is a passage nearby:
The first step is intersecting the wall with a small portion of
the step length and is shortened by CWI to end just before the
wall. The second step is intersecting the wall again and is then
lead around the wall. In this case the first step is needlessly
set in front of the wall instead of guiding the step around the
wall. Although the introduced positioning error is minor, the
accuracy may still be increased by reversing the erroneous first
correction. This case is illustrated by Figure 4b.

(a) Multiple wall-intersections
indicating a dead end

(b) Needles shortening of a
step vector

Figure 4: Invalid trajectories indicated by multiple intersec-
tions

Another indication for an invalid trajectory is the change
of step vector orientation by CWI. A correction through an
opening that is located behind the user is unlikely and results
in a change of direction that is greater than 90°, as illustrated
in Figure 5.

B. Finding alternative trajectories

If a trajectory is found as invalid, an alternative needs to
be found. Steps that potentially allow alternative trajectories
are defined as follows: A step vector intersects a wall and is
guided around that wall by CWI. In this case other openings
are searched and collected along this wall. Figure 6 illustrates
this case. A step vector that allows more than one possible
trajectory around a wall is marked with a flag at runtime
and then stored in the list of past steps. The search for steps
with possible alternatives during backtracking is then done

341,6°

* ]

150,3°

(a) U-turn resulting in a dead
end

(b) Nearby opening leading to
a dead end

Figure 5: Scenarios of invalid trajectories indicated by invalid
changes in direction

by checking if this flag is set. The actual computation of
alternative step corrections is done by a modification of the
CWI algorithm: Instead of finishing execution when a nearby
opening is found, we collect all possible openings in a radius
of 5 m. A candidate step that allows no valid alternatives is
also marked by a flag. This step will not be re-evaluated in
later backtracking efforts.

Figure 6: One invalid trajectory and two alternatives

C. Choosing an alternative trajectory

If the evaluation of one candidate step results in multiple
valid trajectories, the most plausible trajectory is selected. For
this purpose, each valid trajectory is scored according to its
average corrected distance s. It is defined as the arithmetic
average over all corrected distances s; within IV steps, with ¢ €
{1,2,..., N}. The corrected distance s; is the distance between
the endpoint of a corrected step vector and the endpoint from
raw data as illustrated in Figure 7. Here, s; and s;;2 have

positive values while s;; is zero. The corrected distance 5 is
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larger for trajectories that are corrected often and significantly.
Trajectories with a low s therefore fit well into the building
geometry and are thus more plausible user trajectories. The
trajectory with the lowest 5 is selected as the estimated user
trajectory. To ensure comparability, the compared trajectories
all have the same step count N.
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Figure 7: The corrected distance s; of two steps

IV. EXPERIMENT

We use the same map and trajectory data as described
in [17] to validate the described backtracking method. This
includes four routes as seen in Figure 8. All routes have a
singular start and end point in order to simplify accuracy
evaluations. The distance between calculated start and end
points is considered the overall estimation error.

While the localization works online, for this experiment the
consecutive uncorrected step vector data from the Madgwick
/ ZUPT fusion described in [17] was recorded and the path
estimation performed offline. The recordings were performed
using a sensor node equipped with a Bosch Sensortec BMI160
inertial sensor and transmitting sensor signals to a connected
Motorola Moto G2 smartphone using Bluetooth Low Energy.
For the experiment, six participants each walked all four
routes three times, resulting in 18 recordings per route and
72 recordings overall.

V. RESULTS

As described in [17], the CWI correction method occasion-
ally introduces significant errors in accuracy with increasing
track length. Regarding short tracks like Route 1 and 2, the
combination of CWI and CPI gains marginally better accuracy
than CWI alone or no correction at all. This may be attributed
to the effects of reduced positioning drift along straight track
sections as illustrated in Figure 2. However, the combination
of CPI and CWI still results in sporadic dead ends as seen by
the large error bars in Figure 9. The described method corrects
18 out of 20 trajectories in which a dead end is encountered
with one dead end remaining in Routes 1 and 2 each. As seen
in Table I, an average accuracy of about 1.3% of the travelled
distance is achieved on routes longer than 100m, reaching
the best accuracy of 1.22% on the longest route. The data
suggests that longer, complex routes are reducing ambiguity
regarding the users true path through a building and therefore

(c) Route 3 (d) Route 4

Figure 8: Routes used in the experiment as seen in [17]
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Figure 9: Localization accuracy: Path deviation at end of each
route

increase the accuracy gained by backtracking. This behavior
is the opposite of typical PDR behavior and shows that the
use of building maps is hugely beneficial in improving PDR
accuracy.

One case in which a dead end remains after backtracking is
shown in Figure 10a. In Route 4, a room is erroneously entered
after a right turn instead of entering a hall. The alternative
trajectory into the hall, highlighted in Figure 10b, is found
but rejected because it violates the validity rule illustrated
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(a) Erroneous trajectory correc- (b) Rejected plausible trajec-

tion by CWI tory highlighted

(c) Additional recursion recov-
ers the trajectory

Figure 10: Increased reliability of localization through deeper
backtracking recursion. Rejected trajectories are marked in
red.

in Figure 4b by needlessly shortening a step vector before
entering the hall. This is corrected by additional backtracking
of this alternative trajectory, enabled by an increment of the
allowed recursion level as shown in Figure 10c. This highlights
the trade-off between reliable localization and increased com-
putation by a broader search for alternative trajectories. The
average computation time for a new raw step vector using a
Motorola Moto G2 smartphone is 229.4us for combined CWI
and CPI. The average processing time including backtracking
is 256.7us, and therefore slightly increased. The maximum
recorded time spend in a call of the backtracking procedure
is 3.36ms. These measurements show that the backtracking
method can provide real-time positioning on a mobile device.

VI. CONCLUSION

In this paper, we demonstrate an extension of PDR-based
indoor navigation systems using a backtracking approach.
More specifically, we show how the localization in a building
resembles a depth first search through a tree of likely user
trajectories. Our approach enables us to localize the user
with comparably little initial effort, evaluating more complex

TABLE I: Accuracy results, measured as distance between
start and end point, relative to route length

Route | Lengthinm | none | CWI | CWI+CPI | backtracked
Route 1 77.01 512% | 6.12% 4.01% 3.71%
Route 2 99.44 4.67% 3.59% 2.89% 1.33%
Route 3 139.72 5.56% 7.54% 8.93% 1.37%
Route 4 22597 1.69% | 13.80% 13.23% 1.22%

trajectory adjustments by backtracking only if needed. The
backtracking method presented here is modular: The trajectory
validation, search for alternative corrections at a given part of
the trajectory and scoring of possible valid trajectories may be
replaced by other application specific methods. This enables
backtracking for a variety of PDR approaches.

A future extension of this method would be the inclusion
of trajectory shape matching to known paths and re-sizing
of steps. Additional localization by coarse grained WiFi fin-
gerprints, to distinguish in which room or corridor a user is
located, may be used to assist the scoring and validation of
alternative trajectories.
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