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Abstract—Mobile devices are carried by many individuals
in the world, which use them to communicate with friends,
browse the web, and use different applications depending on their
objectives. Normally the devices are equipped with integrated
sensors such as accelerometers and magnetometers, through
which application developers can obtain the inertial values of
the dynamics of the device, and infer different behaviors about
what the user is performing. As users type on the touch keyboard
with one hand, they also tilt the smartphone to reach the area
to be pressed. In this paper, we show that using these zero-
permissions sensors it is possible to obtain the area pressed by
the user with more than 80% of accuracy in some scenarios.
Moreover, correlating subsequent areas related to keyboard keys
together, it is also possible to determine the words typed by the
user, even for long words. This would help understanding what
user are doing, though raising privacy concerns.

I. INTRODUCTION

Mobile devices are carried by many individuals, which rely
on them to access personalized services, work and commu-
nicate with friends and relatives. By tilting the device and
interacting with it, applications can annotate user data, and
personalize services for a more optimized user experience.
However, the possibility to automatically infer what the user
is doing or typing also raises privacy concerns. The majority
of mobile devices are enabled with integrated sensors such as
accelerometers, which report values useful to determine the
dynamics of the device. The whole paradigm of Context Aware
Computing builds on the ability to understand what the user
is doing, or where she is, made possible by the use of the
integrated sensors. This enables applications such as activity
recognition and transportation mode detection [1] [2], which
enable personalized services tailored to the current context
of the user, and empowers developer to automatically label
different activities and contexts. For instance, analyzing the
tilting of the device may lead to understand where the user
is clicking. On the one hand this could help in understanding
how the user types, which may also lead to understand whether
the user is in a hurry or relaxed. On the other hand, they may
also be exploited to understand private information about the
user, such as words typed, hence sentences.

Our aim is to show that the different tilting positions of
the smartphones can lead to understand which area the user is
pressing on the screen. Clearly this information can then be
used to annotate meaningful user data, such as typing speed,
frequency, and particular words. However, as these sensors
can be currently used without requiring any permission on the

Android system, a malicious application knowing the layout of
the applications in use may actually understand what items the
user is clicking. This problem is particularly important in case
of applications which handle sensitive data, or those requiring
passwords and secret information in order to access private
information about the user. Clearly, this task is inherently
challenging, as there are a number of variables which affect
the tilting position, not only related to the touched area, such
as the position in which the user is while typing. Moreover,
recognizing bigger areas is certainly more feasible, as tilting
positions differ more among each other. For this reason,
we will perform our evaluation accounting for two possible
scenarios, one in which the initial orientation of the device is
known a priori, and the other one in which it has to be derived
by analyzing the sensors values. However, many applications
use a virtualized keyboard which typically appears on the
lower part of the screen, through which the users can click and
type words, passwords and numbers. Clearly, recognizing the
areas which the user touches would also enable applications
to eavesdrop the words the user is typing, potentially stealing
private information.

In this work we present two novel contributions: at first,
we develop a model which enables a mobile application to
recognize the areas which the user is touching on the screen,
by leveraging on the tilting perceived by the sensors and
comparing it with previous measurements. We then focus our
analysis on the recognition of areas related to the keyboard,
which appears on the lower part of the touchscreen. By recog-
nizing single touch events and building a tree of possibilities,
also accounting for neighbor areas, and correlating subsequent
recognitions, we show that it is possible to obtain an accuracy
of more than 80% for short words, while longer words can be
recognized with almost perfect accuracy. The rationale is that
longer words, which benefit from longer sequences of touch
events, are easier to be recognized than shorter words which
instead are more prone to inaccurate touch event recognitions.

The rest of this paper is organized as follows: Section II
discusses related works from literature, particularly regard-
ing systems which exploit wearables and mobile devices to
eavesdrop information about the user; Section III presents our
framework to recognize touch events on smartphones, based
on integrated sensors; Section IV correlates together results
from Section III to eventually understand typed words, and
evaluates its performance; Section V concludes this paper and
presents future work on this topic.
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II. RELATED WORK

Since their introduction in smartphone and tablets, sensors
such as accelerometers, magnetometers and gyroscopes have
been used to understand and model the environment in which
the mobile device was currently used, to eventually provide
more appropriate content and to perform automatically specific
actions. This has been the case of activity recognition [1],
through which mobile devices can understand what the user
is currently doing, such as walking, running, or how she is
moving, through techniques known as transportation mode
detection [2]. Another field is that related to E-health [6],
where devices are leveraged to monitor patients over time,
or used to acquire precise knowledge of their dynamics.
Many works which aim to acquire a better understanding
of the mobile device current context typically leverage on
machine learning models, which are trained to recognize future
similar events [2]. However, as we already stated, acquiring
information about the patterns of the user may also provide
knowledge on user’s private and sensitive information, such
as typical visited places, hours in which she performs specific
activities and so on and so forth. Closer to the topic of this
study is the possibility to eavesdrop information on the areas
the user is interacting with on the smartphone. More recently,
with the advent of wearable devices, studies have been also
performed on the user’s interaction on the smartphone by
exploiting data obtained through similar sensors installed on
the wearable device.

We can classify studies focusing on testing the privacy
boundaries of users in three different classes: (i) identifying
the user among a set of human beings; (ii) forecasting future
actions of the user; (iii) understand how the user is interacting
with the device.

Understanding the specific user can be performed through
a multitude of different techniques. For instance, by analyzing
how users walk, [7] shows that it is indeed possible to identify
a specific human beings, by analyzing different user patterns,
which are distinct among each one according to the step
length, speed and frequency. While on the one hand this may
enable more automated authentication procedures or tools to
identify outlaws, it may also expose the user to being identified
even when not requesting it, thus raising privacy issues.

Forecasting future actions, locations and relationships the
user may have in the future has been studied in the past to
improve resource allocation and to deliver more appropriate
content, such as giving in advance maps and information re-
lated to the future venues. This falls under the general umbrella
of Anticipatory Mobile Computing [12], which predicts future
user activities by analyzing past actions. However, it has been
shown that providing apparently harmless information on the
internet may lead to expose private information such as home
location [3] [4] [8].

To identify what the user is doing on a mobile device, there
are different studies which tackle the problem of understanding
movement patterns extracted by the data coming from wear-
able devices worn by the user [9] [10] [13] [16] . In [17]

the authors use instead the audio traces collected by mobile
devices to understand what the user is writing. Specifically,
[16] uses a malicious app installed on a user worn smartwatch
to infer handwritten words.

Interesting the study presented in [5], where the authors
show that using accelerometers and vibration patterns pro-
duced by smartphones, private communication can be achieved
for two close devices, which has a similar aim as [14], in which
the focus is to exchange cryptography keys securely.

When relying on smartphones accelerometers, we have
discussed how these sensors can be hacked to collect private
user data. The work presented in [15] shows that by carefully
introducing acoustic noise, it is possible to achieve certain
levels of uncertainty in the accelerometer measurements, po-
tentially reducing privacy problems raised by their malicious
use. Closer to the work of this paper is that presented in
[11], where authors use accelerometers to understand users
passwords. However, we focus on longer sentences rather than
just passwords, and we also show that by using more sensors
such as the magnetometer improves the overall accuracy.

III. TOUCH EVENT RECOGNITION

In this section we describe the model we developed to
recognize touch events on smartphones. We assume users
perform touch events on a smartphone using one hand. As
the user types in different areas of the screen, also the tilt of
the smartphone will change. Our aim is to read data coming
from the sensors, and recognize different orientations, so they
can be mapped to specific areas of the screen.

In Section III-A we describe the mobile application used
to gather the data and to provide performance evaluation of
our proposed system. Section III-B presents the performance
evaluation of the touch event recognition.

A. Mobile application

To obtain the data and test the effectiveness of our proposal,
we developed an Android application capable of recording the
raw measurements of the accelerometer and the magnetometer,
and the touch events performed on the screen, based on
different number of areas available on the screen, hence
of variable sizes. In particular, one of the sizes which we
investigated resembles the normal key size of the smartphone
keyboard, paving the way to the analysis we will present in
Section IV.

Data is recorded with a frequency rate of 10 Hz, and stored
with the following structure:

Θ(t) =< t, ax,y,z,mx,y,z,Ω >,

where t is the time, ax,y,z are the values corresponding to the
3 axis of the accelerometer, while mx,y,z store the same for
the magnetometer. Finally, Ω reports the area pressed on the
screen, if any.
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Fig. 1: Probability Density Function of the raw Accelerometer
readings. Figure best viewed in colors.

Base tilting: We test two different scenarios, one where the
base tilting of the smartphone is known a priori, and the other
one in which it is not known. The former refers to the case
in which the user keeps the smartphone in position before
starting to touch the screen, while the former is modeled for
scenarios in which the user writes on the touchscreen quickly,
such as the case for instant messaging applications. For the
first case, the base tilting of the devices is easily determined
by analyzing the orientation of the device, obtained through
the internal accelerometer, and computing the average values
while the device is still.

The second scenario is instead more challenging, as dif-
ferent orientations obviously produce different tilting when
touching areas on the screen. To understand the base tilting,
we firstly assume that the base tilting of the device does
not change during the recognition phase. The general idea is
that even when moving the device to reach different areas
of the screen to touch them, the smartphone rotates on a
virtual axis, which is the base tilting. To recognize it, we
leverage on the density values of the raw readings, as shown in
Figure 1, where we plot the raw values of the accelerometer,
which clearly show 3 different peaks. Let PA

x , PA
y and PA

z

be the raw values of the X axis, Y axis and Z axis peak for
the accelerometer, respectively, and PM

x , PM
y and PM

z those
for the magnetometer. Having estimated the base tilting, we
change the raw values of the two sensors as:

Θ′(t) =< t, ax,y,z − PA
x,y,z,mx,y,z − PM

x,y,z,Ω > .

In other words, when we do not know a priori the tilting of the
device, we focus on the differences of tilting rather than on
the absolute value itself. This enables comparing also different
position of the user together.

Models: We build two different models, depending on the
available sensors on the smartphone. While the accelerometer
is available in almost every model on the market, the magne-
tometer is not. Hence, we build MA which only accounts for
measurements obtained from the accelerometer, and MA,M ,

which instead uses both the accelerometer and the magnetome-
ter. As classifier, we used a Random Forest algorithm for both
models, though with a different set of initial features.

B. Touch event results
In this section we present the results related to the touch

event recognition. We test our proposals accounting for differ-
ent scenarios, and with different numbers of areas to recognize.
All the tests are performed on a ASUS Zenfone Max 2.

When users type, the base orientation of the device may
change depending on their position, hence also the values of
the internal sensors would give different values depending on
it. We then evaluated two different scenarios, one in which we
perform tests on a single run, with the user typing standing
in the same position. The second test instead involves the
user typing, then moving and then typing again, so that she
will slightly change the base tilting of the device. Clearly,
the second case is far more challenging than the first one,
as similar tilts may refer to different areas, since the initial
position of the user is also different.

Figure 2a shows the accuracy results when considering the
scenario in which the position of the user does not change
through the tests, while Figure 2b refers to the scenario in
which the users records 5 minutes of data, then moves, then
records again, hence changing her typing position. Both figures
show the red bar referring to the use of MA,M , while the
black bar refers toMA. Clearly, using also the magnetometer
improves the results, regardless of the amount of areas to be
recognized, as it may also give indication on whether the user
is rotating the smartphone and how much.

Naturally the accuracy results of Figure 2a are higher
than those of Figure 2b, as the base tilt of the device does
not change through the tests, hence making touch events on
the same areas more similar among them, thus easier to be
recognized. We present, for both scenarios, results for different
area size, specifically for 8, 16 and 32 areas evenly distributed
among the whole screen. Moreover, we also present a keyboard
size area recognition test named KBD, which refers to screen
areas placed in correspondence to keyboard keys, and with
the same size. Compared to the other tests, the areas of KBD
are 4 times smaller than the 32 areas size. For both scenarios,
increasing the number of areas to be recognized obviously
reduces the accuracy, as areas are smaller hence the differences
between them are lower.

IV. WORD RECOGNITION

We perform word recognition by correlating subsequent
touch events and building a tree, which provide the probability
of a given word to be classified. To improve the overall
accuracy of the word recognition phase, we leverage the
contents of an English dictionary of more than 470.000 words,
through which we analyze whether a sequence of characters
may lead to a meaningful word or not.

A. Model
In this section we describe how we build the model which

recognizes the words typed, by recognizing the touch events
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Fig. 2: Touched area recognition test for the two scenario. Figure 2a refers to the case in which the user is not moving between
tests; Figure 2b shows the same analysis, though with the user which changes position, also the tilting of the mobile device.

Fig. 3: Example with Ci = a and A(Ci) = {q, w, s, z}.

on the keyboard. For any given character Ci at the i-th position
of a sequence of characters Λ we define A(Ci), which is the
list of adjacent characters of Ci in a typical qwerty keyboard
of a smartphone. We do this to assume a certain degree
of uncertainty in the recognition, hence when our system
recognizes Ci as the touched area, we also give a probability
to the other adjacent characters in A(Ci) of being touched.
More formally, after identifying the area touched by the user,
hence character Ci, we define the probability p(Ci) as:

p(Ci) = 1− (|A(Ci)|) · pc(A(Ci)),

where pc(A(Ci)) is the probability of character c ∈ A(C),
and |A(Ci)| is the total number of adjacent characters. Hence,
pc(A(Ci)) is defined as:

pc(A(Ci)) =
1

|A(Ci)|+ 2
.

Basically, the area identified by the system presented in
Section III is considered with a higher probability (p(Ci)) than
that of every other character in its adjacency list (pc(A(Ci))).

This is to assume possible uncertainty in the recognition, and
to consider as if closer areas may have been clicked instead of
the identified one. In other words, it is similar to have a lower
number of areas to be discovered, making them bigger hence
easier to be recognized, as Figure 2a and Figure 2b show.
An example of this behavior is shown in Figure 3, where the
area of the character A is identified, hence all the adjacent
characters are also considered, though with a lower probability.

We then correlate different characters Ci identified, along
with their adjacency list A(Ci), in a sequence Λ. We then build
a tree TΛ in which level i is composed with the nodes Ci and
all that in A(Ci). The transition probability from any node in
level i−1 to Ci is p(Ci), while for any given character c at the
same level of the tree is for all of them pc(A(Ci)). Once the
tree is built, we select the word with the highest probability,
accounting for words which do not exist in the dictionary.
Basically, we visit TΛ and remove each node n, and hence all
its subtree, if no words exists from the beginning up to n.

Figure 4 shows an example of TΛ for the word app, though
For sake of readability we select a rather short word.

As it is possible to see, initially recognizing the character a
also puts at the same level in the tree the characters w, z, s and
q (i.e.A(a) = {w, z, s, q}). It is then possible to see that all the
subsequent characters are taken from the following character
which is p and all its adjacency list A(p) = {o, l}. Finally,
we add the last character p once more and A(p) = {o, l}.
At each step we remove the paths that do not lead to any
meaningful word, identified in red in Figure 4, and we do not
explore deeper levels of such subtree. All the orange paths are
possible words, which have however lower probabilities (not
shown here to improve readability) than the recognized word
which is shown in green.

As we will show later, the tree of longer words eventually
have less leafs at the end of the recognition than those of
shorter words, as the possibility of having an impossible word
is raised, reducing the possibilities for choosing the final word.
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Fig. 4: Example tree with TΛ = app. In green we show the
recognized word, in orange we show possible yet less probable
words, and in red we show words which do not exists in the
dictionary, hence removed. Figure best viewed in colors.

B. Results

We now present the performance evaluation of the word
recognition phase. In particular, we evaluated the average
Levenshtein Distance from the recognized word and the real
one, the accuracy of top-3 presences of the word, and the
average position in the list of possible word out of the tree T ,
sorted on probabilities.

The Levenshtein distance is a popular metric to compare two
strings. Basically, the Levenshtein distance is the minimum
number of simple changes applied to a string A to change it
to a string B. The changes can be removing a character or
inserting it, or substituting a character with another one. For
instance, the Levenshtein distance between string home and
string cone is 2, as we need to change the characters h and m
into characters c and n, respectively. For our analysis, as we
always compare strings of the same length, the changes can
only be related to the substitution of characters.

Figure 5a shows the average rank of the correct word among
all the possibilities. We plot the results with probabilities equal
to 0.4 which matches the KBD recognition withMA,M shown
in Figure 2b, 0.6 which matches the KBD recognition with
MA, 0.8 and 1. We also show higher probabilities than those
we presented in Section III to show the possible performances
of the system in case improved touch event recognition is
used. Obviously higher probabilities on average achieve better
ranks, as there is a higher chance of correctly identifying the
right area touched. Aside from the p = 1 case which shows
a different trend, all the other 3 probabilities have lines with
similar slopes. The rank increases up to a string with a length

of 4, then starts to decrease. This happens because with few
characters there may be multiple possible words, hence the
right word may end up in a lower higher rank. Interesting to
note that the density of the words length, shown with a blue
line on the right y axis, there are far more words with longer
lengths, with the top at 8 and 9 characters. However, as in
our analysis we remove words outside the dictionary, having
longer words actually improves our recognition ability.

Figure 5b shows the accuracy of the word recognition,
which follows a similar yet inverse slope compared to Figure
5a. It is possible to see that longer words (i.e. greater than 8
characters) can be recognized with satisfactory performances
even with low probabilities, while higher probabilities enable
to recognize even shorter words.

However when comparing strings, the Levenshtein distance
is regarded as one of the more truthful metrics to understand
how close two strings are to each other. Figure 5c and Figure
5d show that even with low recognition probabilities, it is
possible to achieve a rather low Levenshtein distance, even
for short words. Interestingly, with longer words, thus with a
possibility for the Levenshtein distance to increase, it remains
constant, meaning a more accurate recognition.

V. CONCLUSION AND FUTURE WORK

Sensors integrated in modern mobile devices open up for
several services, by monitoring the movements and position
of the devices. However, as we have shown in this work
they can be also used to obtain sensitive information about
what the user is typing, by monitoring the orientation of the
device. Correlating subsequent identified touched areas with an
English dictionary, a rather challenging task, shows that words
can be recognized even with modest accuracies in recognizing
the touched area.

Future work within this topic are devoted to the improve-
ment of the touched area recognition, by using more complex
yet more accurate models, and to also monitor the transition
phase from the base tilt to the one referring to the touched area.
Moreover, also correlating subsequent words together, hence
recognizing sentences, may remove those sentence which are
less probable than others, thus raising even more the overall
accuracy. We will also develop different models which may
be used whether the user is typing with the right hand, the
left hand, or with both hands.
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