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Abstract—This research proposes a flood area estimation
method in urban areas using personal location data. Many
studies have investigated the estimation of flood levels; however,
the majority of these previous works are based on the flood
monitoring data. The main cause of flood disaster death is
drowning due to evacuation delay in the area where observation
equipment is not installed, so it is difficult to estimate flood
occurrence by the previous method based only on monitoring
data. In this research, we propose an estimation method that
does not rely on monitoring data and instead estimates flood
areas using GPS data collected from smartphones owned by the
affected people. This method detects anomaly areas to analyze
temporal and spatial changes of an area where a personal
movement during a flooding event differs from that during
regular times from personal location data. For anomaly detection,
we use a dynamic time warping method with fixed window size
and inequality metrics to estimate the area where an anomaly
event occurred in 2 km grids. We applied this method to
Kurashiki city, Okayama Prefecture, where there 52 people died
during a flood that occurred in Japan in 2018. Our method found
that, at the flooding time, the anomaly occurrence was estimated
correctly in the area where inundation actually occurred.

Index Terms—Disaster Estimation, Anomaly Detection, GPS
Data

I. INTRODUCTION

There are concerns that the risk of floods on the global
scale will intensify. The IPCC’s Fifth Assessment Report
stated that global warming is gradually progressing, and it is
likely that the frequency and intensity of rainfall will change
accordingly [1]. There are already many areas where the fre-
quency and intensity of heavy rain and flooding are increasing
worldwide [7] [9]. As one type of flooding countermeasure,
risk analysis studies aim to utilize the land vulnerability
analysis for flood control through urban construction and town
development against disasters [10] [13] [6]. For large rivers,
the development of prediction technology based on water level
observation data has been researched to precisely detect floods

in advance. Some observation methods using wireless sensor
network (WSN) studies feature smaller equipment for water
monitoring sensors [7], multiple sensing [8], WSNs for
alerts [9], and resilient data communication networks [10].
Approaching flood prediction, hydrological techniques [11] or
artificial neural networks [12] [13] based on the flood level
data are proposed as good prediction methods.

However, before flooding of a large river occurs due to
a large amount of rain, water overflowing onto the adja-
cent road may occur and make evacuation difficult. This is
a phenomenon called inundation flooding. The water level
monitoring of the road is necessary to detect flood occurrence;
nevertheless, road monitoring for flooding has hardly been
carried out. In addition, almost no road flooding has been
observed, since the damage caused by inundation flooding
is smaller than that of flooding of a large river. Inundation
flooding may cause inundation of several tens of centimeters
to several meters.

Recent flood disaster surveys have pointed out that the
occurrence of inundation flooding may cause the damage of
river floods to be greater. Inundation flooding has already
occurred by the time a large river flood is detected; therefore,
there is a high possibility that the affected people cannot
evacuate to shelters. The victims who cannot evacuate will
suffer the damage from a large river flood that occurs after
inundation flooding. In Japan, the heavy rain in Kita-Kyushu
in 2017 (18 people dead due to flooding) and heavy rain in
western Japan in 2018 (over 200 people dead) caused many
deaths because inundation flooding prevented evacuation to
escape the flood waters. For this reason, we believe that it
is necessary to detect the occurrence of inundation floods,
even for areas where water level observation equipment is not
installed.

This paper proposes a spatial-temporal anomaly estimation
method using personal location data. By applying this method
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to areas that have a high possibility of flood occurrence,
we detect anomaly events such as flooding even in areas
where observation equipment is not installed. This anomaly
estimation method calculates the characteristics of personal
location data; moreover, the method investigates the spatial
and temporal changes of the characteristics. Spatial-temporal
anomaly estimation is performed by extracting the time and
area in which the change deviates from those of regular time.
We apply this method to Mabi town, Kurashiki city, Okayama
Prefecture, where 52 deaths occurred because of heavy rain in
2018. In addition, we consider a method for estimating road
conditions of the area detected as an anomaly area. In Japan,
large flood often occurs in areas with low population. Thus, it
was difficult to determine the tendency of people’s movement
using previous GPS data analysis methods in flood disaster
situations. This paper is an anomaly detection method that can
be applied even in areas with small personal location data.

II. RELATED WORK

There are several papers that report detecting urban anomaly
states based on human behavior. Sakaki proposed an algorithm
to monitor tweets and to detect earthquake events [14]. He
considered each Twitter user as a sensor and applied Kalman
filtering and particle filtering, which are widely used for
location estimation in ubiquitous/pervasive computing. Weng
tried to detect flood events by analyzing the text stream in
Twitter with clustering of wavelet-based signals [15]. Seon-
hwa developed a real-time monitoring system of social big
data to monitor disaster situations and trends in real time and
draw conclusions from big tweet data [16]. The system crawls
social big data, especially Twitter, analyzes the disaster-related
tweets in real time, and displays disaster issues and trends on
a map.

In recent years, to determine the population distribution
in disaster areas, resource utilization for rescue, and optimal
placement of human resources, many studies have analyzed
and predicted the movement of people and vehicles during
disasters using GPS data obtained from mobile phone base sta-
tions and their statistical distributions. Witayangkurn reported
a system for detecting anomalous events, such as earthquakes,
in grid-based areas using large-scale GPS data [17]. Their
system used a hidden Markov model to construct a pattern of
the spatial-temporal movements of people in each grid during
each time period. Madey developed an application using real-
time cell phone calling data from a geographical region,
including calling activity [18]. The application tried to analyze
the movement and calling patterns of the population using
the cell phones in a geographical region to serve as ad hoc
mobile sensor networking. This application is used for various
aspects such as a service that identifies passable roads from
the movement of cars and a prediction method that simulates
the movement of people in a wide area immediately after the
occurrence of an earthquake. Gerla presented a system for
detecting traffic congestion and incidents from real-time GPS
data collected from GPS trackers or driver smartphones [19].
The simulated results on incidents showed a detection rate

Fig. 1. Proposed Estimation Method

of 91.6%. However, GPS data at the time of a flood disaster
do not have as wide an area as that during an earthquake
disaster. It is considered that the absolute number of data is
small depending on the region. Consequently, it is an issue that
the tendency of people movement during flooding is difficult
to determine.

III. FLOOD ESTIMATION METHOD

A. Overview

Processing of the proposed method is shown in Figure 1.
In this method, we estimate the flooded area by extracting
temporal and spatial changes to divide the area into detailed
grids, which is a difficult task even with a small number of
location data. This method consists of two processes, temporal
data processing and spatial data processing. First, we divide
the target area into 2-km grids. As temporal data processing,
we classify the location data of each grid with clustering using
the k-medoids method. Then, we calculate the time series data
expressing the difference from the regular time to compare the
characteristics of clustered data to personal location data at a
target time. For this characteristic comparison, we improve the
dynamic time warping (DTW) method as windowed dynamic
time warping (wDTW), which is a method for quantifying
the similarity between several time series data. For spatial
data processing, we detect the anomaly area to compare the
characteristics of each grid using inequality metrics with the
time series data calculated by the temporal data processing.

B. Classification by Moving Speed

First, we calculate the moving speed from the location data
recorded on the server and classified by speed using a method
of [20]. The moving speed is calculated from the difference of
the previous time/location of the unique ID. Then, we classify
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the data into three groups of 0.0-0.5 km, 0.5-5.0 km, over
5.0 km according to the moving speed. The ID of 0.0-0.5 km
speed is “stay state”, the ID of 0.5-5.0 km speed is “walk”,
and the ID of more than 5.0 km speed is equivalent to the
movement by “car”. Here, the data with recorded intervals
exceeding 30 minutes are excluded because it is difficult to
accurately determine the moving speed during this timeframe.
It may be considered that multiple movements are included
within 30 minutes. Since the classification in this paper is not
a distinction of a means of transportation, but a method to
classify how far the affected people moves in a certain time,
we use a simple classification method based on distance and
time. Through this processing, we calculate time series data
consisting of unique ID, latitude/longitude, and moving speed.

Furthermore, the target area (here, the area that has a high
possibility of flood occurrence) is divided into n grids of k
km. For n grids, the total number of unique personal location
data existing in the corresponding grid is calculated every 15
minutes for the time series data. Although the smaller the value
of k, the more the detected area becomes detailed, if k is
too small, the total number of unique personal location data
existing in the grid decreases, and detection becomes difficult.

C. Clustering

We perform clustering on the time series data of n obtained
for location data during a regular time. The DTW distance is
calculated for n time series data using DTW. DTW calculates
the DTW distance by Di,j of all combinations for similarity
matrix D of M ×N with the following equation.

Dj,j =
√
(xi − yj)2 +min(Di,j−1, Di−1,j , Di−1,j−1) (1)

The DTW distance of xt and y at the time of t×15 minutes
is Dt,N−1. Each M , N is the length of time series data x,y.
For the obtained n number of distance matrices DM−1,N−1,
we process clustering of the time series data using the k-
medoids method, which is based on similarity. This paper
uses personal location data collected only from the smartphone
on which the application is installed. It is considered that
this data has statistical sampling bias. Therefore, we did not
use clustering methods like Mean-Shift Clustering or Density-
Based Spatial Clustering of Applications with Noise based on
spatial density. The k-medoids method is to select k medoids
from N data sets. Then, the method finds the nearest neighbor
medoid among k medoids for N − k pieces of data and
allocates data to the cluster to which the medoid belongs (L
is the cluster number). The medoid of the cluster is updated
based on

argmin
i∈Ci

nl∑
j=1

d(xi, xj) (2)

By the processing, the time series change of the total
number of unique location data of each grid at the regular
time is classified into l number of clusters. Then, we obtain l
number of clustered time series data to calculate the average

value of the total number of unique location data for each
cluster every time t using regular time data.

D. Windowed Dynamic Time Warping

Regarding the location data of each grid at the time of flood
occurrence, we calculate the difference in time series change
from the regular time. For each grid on the target date, we
compare clustered time series data of the same day before the
month calculated by k-medoids clustering as the regular time.
The difference between the time series change of the regular
time and the target date is calculated using the expression
(1). Here, for DTW, the window width of the distance matrix
calculation is divided into constant widths; we call it wDTW.
For xi of target data, we determine the window width of y as
j = t−2 t+2 to compare the time series data yj . To calculate
the distance matrix, data processing is performed to determine
whether a large difference occurs within 30 minutes before
and after the time t. We perform this processing for each t, to
calculate time series data of the wDTW distance between the
regular time and the target date for each grid.

E. Inequality Metrics

Here, by calculating inequality metrics, the area in which
the anomaly event has occurred is estimated in the target area.
For calculating inequality metrics, we use the Gini coefficient
(Equation (3)), which is a measure of the degree of inequality
between regions. The number of each grid is i = (1, 2, ..., n),
and the region attribute zi is the wDTW distance. We define
the wDTW distance of the target grid as zj . z represents the
sample mean of wDTW for all grids.

G =
n∑

i=1

n∑
j=1

|zi − zj |
2n2

z (3)

The Gini coefficient shows that the closer the value is to 1,
the greater the regional inequality. When the Gini coefficient
is large, we estimate the large grid of spatial Gini coefficient
Gi,j as the area of anomaly occurrence. In this study, the
area where this anomaly occurs is calculated based on the
moving speed. We focus on the possibility that actions that
can be carried out in other areas cannot be performed in the
target area if the moving speed is particularly different in that
area. Specifically, the moving speed of a car in other grids is
based on evacuation orders; in other words, although the car
is evacuating, if movement is not observed in a certain grid,
we consider the possibility that the car cannot move due to an
influence such as flooding.

IV. ANALYSIS OF ACTUAL FLOOD CASE

A. Flooding Case of Japan Floods in 2018

In this evaluation, to detect the flooded area, we use personal
location data for a flood disaster that occurred in western Japan
in 2018. This flood disaster occurred due to torrential rains
caused by Typhoon No. 7 and a seasonal rain front from June
28 to July 8, 2018. In Kurashiki city, Okayama Prefecture,
Japan, a sediment-related disaster alert was announced on July
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Fig. 2. Personal Location Data using GPS Data

5, and a heavy rain special alert was issued at 19:40 on July 6.
Due to the continuing rain, an evacuation advisory was issued
at Mabi town in Kurashiki city through 22:00 on July 6. At
22:20, the Oda River reached the flooding danger level. The
area on the right bank of the Oda River was under a mandatory
evacuation order at 23:45. Additionally, flooding occurred in
the Oda River at 0:30 on July 7. A mandatory evacuation order
was issued to the area on the left bank of the Oda River at
1:30.

Mabi town in Kurashiki city was widely flooded by morning
since the embankments of the Oda River and the tributary
to the Oda River were broken down. Flooding occurred in
the Oda River at 0:30 July 7, and an evacuation order was
announced at 1:30 on the left bank of the Oda River. 51
people died in Mabi town. Most victims appear to have died by
drowning. Of the victims, 43 were were found indoors, and 42
of them were found on the first floor of their homes. According
to a survey by the Japan Society of Civil Engineers, the depth
of flooding exceeded 5 meters. Moreover, the level appeared
to reach a maximum of 5.4 meters. The floods covered 1,200
ha, which is one-quarter of Mabi town.

B. Personal Location Data

This research uses GPS data obtained from smartphones as
anonymized personal location data (the data were provided
from Blogwatcher1). Specific applications collect latitude and
longitude location data (Figure 2). The smartphone location
data are automatically transmitted to the server every 15
minutes.

The location data consist of detection time, latitude, lon-
gitude and unique uuid. We use the location data of Mabi
town from 18:00 on Friday, July 6, to 9:00 on Saturday, July
7, 2018 for analysis. For comparison, we use the data of the
same time periods from June 8 (Friday) to June 9 (Saturday),
2018, one month prior to the event. Data with a detection time
interval over 30 minutes were excluded from analysis. The
number of unique IDs is 3,009. The population of Mabi town
is about 23,000. As a feature of these data, only the location
data of smartphones that launch the applications is collected;
therefore, the results do not contain the total number data, and
there is some bias.

1Blogwatcher: https://www.blogwatcher.co.jp/

Fig. 3. Flooded Area and Population Distribution from Location Data

C. Population Distribution in the Flooded Area

Figure 3 shows the population distribution of Mabi town.
Calculation of population distribution is not included in the
procedure of this method. We tried visualizing the population
distribution in order to confirm whether it is possible to detect
an anomaly area with simple analysis. The flooded area is on
both sides of the Oda River and the west side of the Takahashi
River. In Figure 3, we present the flooded area divided into 250
meter grids and the population distribution at ① 18:00-19:00,
② 0:00-1:00, and ③ 8:00-9:00. Figure 3: ① 18:00-19:00 is
before the occurrence of flooding in this area. There are many
distributions on the north side of the river.

Figure 3: ② 0:00-1:00 shows the population distribution
when flooding occurred in the Oda River. The flooding of
the Oda River occurred at 0:30. Comparing with Figure 3:
① 18:00-19:00 and ② 0:00-1:00, the distribution is moving
slightly from the periphery of the river. Figure 3: ③ 8:00-
9:00 shows the population distribution after flood occurrence.
Comparing these three time periods, the distribution gradually
changed for each period; nevertheless, we found that there
were no large changes in those trends.

D. People Movement Trends in a Flood Situation

With respect to the whole area of Mabi town, we estimated
the moving speed from the difference of the location data.
Then, we classified the moving speeds into three groups.
Figure 4(a) and Figure 4(b) show the ratio of the three groups
with a bar chart. Each moving speed corresponds to the
following: blue in a stationary state, orange during walking,
and green in a moving vehicle. For each moving speed, a
blue bar corresponds to a stationary state, an orange bar
corresponds to walking, and a green bar corresponds to a
moving by vehicle. Additionally, the green and orange bars
indicate the ratio of people moving.

In the regular time of Figure 4(a), after 18:00, the ratio of
people moving decreases. By contrast, in the flooding situation
of Figure 4(b), we found that there are many people moving
even after 22:00. Furthermore, the black line chart shows the
number of people estimated to be moving. In the regular time
of Figure 4(a), the number of people moving decreases until
4:00. From 5:00, the number of moving people increases. In
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(a) Regular Time

(b) Flooding Situation

Fig. 4. Ratio of Location Data Number by Moving Speed

contrast, the trend in the flooding situation was totally different
from that of regular times.

The number of moving people is increasing at 22:00 (when
the evacuation advisory was issued), at 0:00 (when the evacu-
ation order was issued), and at 1:00 (after the evacuation order
was issued). We found that there was a different moving trend
from the regular time, and the number of people moving in-
creased during the evacuation advisory and evacuation orders.

E. Result of Estimation Method

The result of clustering is shown in Figure 5. We perform
the clustering process by the k-medoids method, after deleting
the grid with extremely low number of location data (1 or
fewer IDs in 15 minutes) using the data from 0:00 June 8
to 23:59 June 9 one month before the flooding. 26 grids
have remained. Figure 5 shows the result of clustering with
5 clusters for the car speed data. As a result of clustering,
there are both grids with large DTW distance values and
small values. Since there were many grids with few affected
people, this method classified as different cluster even for
grid which does not differ much like cluster 0 and cluster
2. However, it is difficult to determine the tendency of grid
with few affected people, hence, it is necessary to consider the

Fig. 5. Clustering Result (Regular Time)

number of affected people that can be detected and to develop
a method to dynamically calculate the optimum number of
clusters. From 0:00 to 23:59 June 8 (t = 0− 96), peaks were
observed in the morning and evening in all clusters. These
peaks are considered to be commuter movement. Since June
9 (t = 97− 182) was Saturday, no peak was observed.

Using wDTW, we processed the regular time clustering
result and the data from 0:00 June 6 to 23:59 June 7 when
flooding occurred. Figure 6 shows the result of wDTW. Figure
6(a) is the result of wDTW at 22:00 when the evacuation
recommendation was issued throughout the city. From the
results of interviews with neighboring residents, it is known
that flooding occurred in various places of the city around this
time. The light blue part shows the area that is finally flooded.
This area almost coincides with the area detected by wDTW.
Figure 6(b) is representative of the time when the evacuation
order was issued to the south of the Oda River. A local agency
issued an evacuation order to the north side of the Oda River
at the time as shown in Figure 6(c). Even at this time, the
area actually inundated was consistent with the result of the
anomaly estimation.

Using the Gini coefficient, we calculated inequality metrics.
At 22:00, as shown in Figure 6(a), the value of Gini coefficient
increased in 11 grids. Among these grids, the 7 inundated
grids were observed. The remaining 4 grids had no inundation.
Overall, 2 grids showed areas where an explosion and a fire
occurred due to inundation around 23:30. There is a possibility
that an anomaly event had occurred around this time. The
maximum value of the spatial Gini coefficient at this time
was 6.81, and the Gini coefficient was 3.30.

F. Discussion Regarding Estimation of the Road Condition

We describe the purpose of analysis for grids detected as
anomaly areas using the spatial Gini coefficient. This approach
is expected to judge passability, that is, whether or not a road
inside the grid can be passed, based on the tracking results of
the route for the area where the spatial Gini coefficient shows
high inequality. We mapped the route of people who moved
for each time period to estimate the routes that each piece of
personal location data moved (Figure 7). For ②, until 24:00
July 6, there is movement even in the flooded area. We can see
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(a) 22:00, July 6 (b) 23:45, July 6 (c) 01:30, July 7

Fig. 6. wDTW Results

Fig. 7. Traffic Results of the Flooded Area

that the moving IDs are decreasing as time passes. In ① and
②, some IDs pass the west side of the Oda River, despite no
movement being observed in③. Namely, there is a possibility
that the road on the west side was not passable. Using these
data, we believe that it is possible to estimate passability of
a specific road. We expect that this passability estimation can
be used for an evacuation route recommendation system.

V. CONCLUSION

This paper proposed a flood estimation method without river
monitoring data using personal location data. Many people
died due to evacuation delay since they could not know a flood
occurred in the area where observation equipment was not
installed. This research estimated flood areas using GPS data
collected from the smartphone owned by the affected people.
This anomaly detection method calculated the characteristics
of location data; moreover, the method investigated the spatial
and temporal changes of the characteristics. We classified the
location data of each 2-km grid with clustering using the k-
medoids method. Then, we compared the characteristics of
clustered data to location data at the time when there was a
danger of flood occurrence. We improved the DTW method as
the windowed DTW method, which was used for quantifying
the similarity between several time series data. Then, for
detection of the anomaly area, we compared the characteristics
of each grid using inequality metrics.

Our method showed that the area actually inundated was
consistent with the flood estimation result. At the same time,

there were some areas that were estimated as anomaly areas,
despite the lack of flooding. It is necessary to improve this
method to accurately estimate flooding areas using data such
as precipitation amount or flood vulnerability. Although this
paper is based on a small data in flood situation, it is necessary
to evaluate whether this method can be applied even flood
damage in other areas. Since this area was a region with
less population, it was detected every 2-km grid. In case of
an area where more personal location data can be collected,
there is a possibility of detecting flood area with more detailed
spatial resolution. We are planning to detect anomaly area and
to evaluate the accuracy by using personal location data of
various flood disasters. We classified moving speed based on
distance and time. This paper used only the data collected at
intervals of less than 30 minutes. In order to use big data
as personal location data, it is desirable to use data with a
large time interval. We will prepare learning data to improve
detection accuracy by machine learning method.

In addition, we considered a method of estimating the road
condition of the anomaly area. In this paper, we showed
a method to estimate flooded area using personal location
data. It is necessary for a system which support to evacuate
the affected people remaining in the estimated flooded area.
In areas where flood damage occurred, we found that the
number of moving IDs decreased as the flood damage area
expanded, mapping the route of people who moved for each
time period. Using these data, we estimated the passability of
a specific road in an anomaly area for an evacuation route
recommendation system.
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