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Abstract—Indoor Positioning Systems are gaining market mo-
mentum, mainly due to the significant reduction of sensor cost
(on smartphones or standalone) and leveraging standardization
of related technology. Among various alternatives for accurate
and cost-effective Indoor Positioning System, positioning based
on the Magnetic Field has proven popular, as it does not
require specialized infrastructure. Related experimental results
have demonstrated good positioning accuracy. However, when
transitioned to production deployments, these systems exhibit
serious drawbacks to make them practical: a) accuracy fluctuates
significantly across smartphone models and configurations and b)
costly continuous manual fingerprinting of the area is required.
The developed Indoor Positioning System Copernicus is a self-
learning, adaptive system that is shown to exhibit improved ac-
curacy across different smartphone models. Copernicus leverages
a minimal deployment of Bluetooth Low Energy Beacons to infer
the trips of users, learn and eventually build tailored Magnetic
Maps for every smartphone model for the specific indoor area.
In a practical deployment, after each trip execution by the users
we can observe an increase in the accuracy of positioning.

I. INTRODUCTION

Recently, we have witnessed great progress in the space
of Indoor Positioning. The most popular techniques are those
that offer good balance between the various costs (capital cost
for development of sophisticated hardware and/or sensor in-
stallation, operational expenses for maintenance) and accuracy
when positioning an individual inside an indoor environment.

Currently, state-of-the-art approaches leverage on signals
that are frequently present in modern indoor environments
such as Wi-Fi [1]–[4] and Bluetooth Low Energy (BLE)
Beacons [5]–[7]. Both Academia and Industry have focused on
exploiting non-human generated signals like the omnipresent
Magnetic Field [8]–[11]. The latter approach has gained pop-
ularity due to cost savings as no specialized sensor installation
and maintenance is required while good results have been
reported in terms of accuracy. Today’s large availability of
advanced sensors, such as Magnetometer, Accelerometer, Gy-
roscope and other, commodity devices such as smartphones
is creating the right conditions to make such approaches
practically feasible.

In particular, magnetometers are becoming part of the de-
facto in-built smartphone sensors, inviting for using smart-
phones and the Magnetic Field as sole means for positioning
users in indoor spaces. However, this introduces a new set
of challenges. First of all, the discrepancies in Magnetic

Field readings between different sensor and/or smartphone
models are sufficient to introduce large errors in the process of
magnetic-based positioning. Specifically, the norm in such an
approach is to fingerprint the indoor area in order to generate
its Magnetic Map 1 and then use the incurred map to position
the user inside the given area. There are good chances that
a user of the positioning system owns a different smartphone
model than the one(s) used for creating the Magnetic Map
of the area. It has been proven that this has a significant
impact on the positioning accuracy [12], even from the most
prominent commercial solutions in the market [13]. Moreover,
a Indoor Positioning System (IPS) it is required to be robust to
changes in the environment, like minor structural changes or
the utilization of electrical appliances, such as the placement
of electrical heaters. Such changes can potentially interfere
with the Magnetic Map initially and, as a consequence, they
will cause conventional solutions to fail.

Copernicus is a novel AI-Centric Organic Indoor Position-
ing System that provides robust positioning accuracy that
is oblivious to the model of the smartphone used either
for fingerprinting or for positioning. We briefly present our
hybrid indoor positioning methodology that leverages both
on the Magnetic Field and BLE Beacons, employing zone-
based positioning [14] with BLE beacons on the Particle
Filter [15] approach. Copernicus improves accuracy compared
to commercial alternatives by approximately 15 meters on
average. In [12], the authors present the theoretical foundation
of Copernicus, and the advantages over other state-of-the-art
techniques that are leading to such increment in accuracy.

The remainder of the paper is structured as follows: We
briefly describe our methodology in Section II. In Section III
we describe the demo scenario. Finally in Section IV we
conclude summarizing the contribution.

II. METHODOLOGY

Copernicus’ system employs an organic way to build a
custom Magnetic Map for every smartphone model of a
given location with only the aid of BLE beacons. This way,
while the positioning service is being utilized, the service
updates the Magnetic Map of the tested location for the
user’s smartphone model. The quality of Indoor Positioning is

1List of coordinates for the indoor area which are associated with their
recorded Magnetic Field magnitude
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Fig. 1: Copernicus High-level Architecture

(a) Markers placed in the corridors (b) Bluetooth beacon

Fig. 2: Physical elements used to assist the Bootstrap Phase

constantly improving as the service learns the Magnetic Field
readings for specific smartphone models.

While most IPS using beacons require that every (x, y)
coordinate within the area must be in range of at least 3
beacons [16], our solution reduces this requirement to just 1,
hence reducing costs without any loss in accuracy. Instead of
focusing on creating one robust global Magnetic Map for all
the smartphone models, our system is automatically retrained
for the various models. Copernicus’ high-level architecture is
depicted in Figure 1.

A. System Bootstrap

Copernicus requires, as any IPS, a bootstrap phase in which
the system is initialized. This phase is performed by the
System Developer, thus the person in charge of administrating
Copernicus. The System Developer must be provided with
an image depicting the floor plan of the specific indoor area.
After that, the System Developer needs to place few Bluetooth
beacons in the area, approximately one every 435 square
meters, and physical markers (see Figure 2). In a production
deployment, the markers won’t be a requirement, as we only
need them for the evaluation of the system.

Finally, the System Developer uses the fingerprinting mobile
application to record few trips that will cover the indoor area.
The developed mobile application records the Magnetic Field

values while the user is moving along routes that cover the
indoor area. The recorded data are then submitted to the
backend service and aggregated to compose the Spatial Map,
which is a list of (x, y) pairs, of the area as well as the
Initial Magnetic Map associated with the System Developer’s
smartphone model.

In a production deployment, this process would be carried
out by the Area Administration, as the mobile application is
self-contained and provides the necessary instructions. Once
this process is completed, the system is ready to be exposed
to the end users.

B. Positioning

For every user’s positioning session, a Particle Filter al-
gorithm is executed (see [12]). Initially, the particles are
uniformly distributed in the indoor area and they are assigned
a random initial orientation. If a Magnetic Map has been
generated for the user’s smartphone model, then Copernicus
will leverage such Magnetic Map to optimize the execution of
the Particle Field algorithm. If such a Magnetic Map does not
exists, Copernicus will use an Initial Magnetic Map.

The client application monitors the user’s movement and
it moves the particles accordingly. Every particle is assigned
a weight that represents the similarity between the Magnetic
Field readings collected from the user and the value of the
closest value to the particle’s magnetic field recording of
the Magnetic Map being used. Hence, the client application
updates the particles’ “position” as the user moves in the area.

Additionally, if we detect that the user is within range
of a deployed BLE beacon then all the particles outside of
the beacon’s radius are deleted. At any point when we have
very few particles remaining, new particles are added to the
algorithm execution. The application reports in real-time the
estimated position of the user as the weighted mean of all the
particles. After the user finishes the positioning session, either
by closing the application or standing still for a long period of
time, the raw data recorded are passed to the Route Inference
service (see Figure 1).

C. Route Inference and Tailored Magnetic Map Learning

The Route Inference service is able to infer the trip the
user followed during the session with some probability. The
intuition is that if the user makes a long enough trip in a
complex indoor area (with corridors and turns). By leveraging
the deployed BLE beacons, we can infer with postmortem
analysis the route that the user followed. Essentially, we are
replaying all the events recorded in the raw data and we
attempt to reconstruct the actually followed path.

If the system does not have a Magnetic Map for the
specific smartphone model, Copernicus will operate on a
copy the Initial Magnetic Map. The output from the Route
Inference service is essentially a list of tuples of the form
(x, y,magneticMagnitude), that the system uses to update
the Initial Magnetic Map, creating a new map for the given
smartphone model.
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With this process, the Magnetic Map gets continuously
retrained for the specific smartphone model without asking
the user to perform frequent fingerprinting. Moreover this
makes our system robust to structural changes as the Magnetic
Maps of the users get constantly updated. The next time
a user with the same smartphone model wants to use the
indoor positioning service, the system will leverage on the
trained magnetic map for the specific device type and offer
more accurate positioning. Please, refer to [12] for detailed
evaluation on the accuracy performance of Copernicus.

III. DEMO SCENARIO

The most obvious advantage of Copernicus is its ability
to provide a generic and robust estimate of a user’s location
in presence of unknown hardware. Thus, the ability to create
a custom profile for each user’s hardware and to use this
additional information to provide a better service overall. Even
after using few trips for training.

To demonstrate that, Let us assume two users utilizing
Copernicus. We would refer to them as User1 and User2.
Both users should use the same smartphone model. However,
it does not have to be the same used by the System Developer
during the Bootstrap Phase. In fact, the ability of the system
to provide an accurate indoor positioning in cases where the
smartphone model used for positioning is different than the
one used during the Bootstrap Phase will be demonstrated.

We provide a testing Android application, shown in Fig-
ure 3, that assists the user in the execution of a specific
trip. During this execution the user is required to report the
arrival at each marker to notify the backend service about the
completion of each trip leg. Upon completion of the trip, the
accuracy is displayed on both the client application and sepa-
rate web dashboard, which is used to supervise the experiment.
The dashboard reports, in quasi real-time, information about
the system’s estimated positions for the timestamps when the
user reported proximity to each marker, which is used in
conjuction with the known position of the marker to provide
accuracy report. User1 will execute the first trip. As she/he
would be using a different smartphone model the system will
show a low accuracy reported on the dashboard, depending
on how different the sensors are with respect to the one used
during the bootstrap phase. After completion of the trip and
inspection of the results, User2 execute a different trip using
the same smartphone model as User1. At the end of the trip,
we expect the system to report an improved accuracy for User2
as Copernicus will have been able to train a profile for the new
smartphone model during the trip of User1.

IV. CONCLUSIONS

Copernicus is a Magnetic-based Indoor Positioning System
which evolves and gets automatically retrained to support the
full range of smartphone models. Due to that, it only requires
a minimal deployment and no manual maintenance. Its value
can be demonstrated even with a limited number of trips.

Fig. 3: A screenshot of the Android Testing Application
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