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Abstract—Out-of-hospital care plays an important role in 

improving the quality of chronic pain management. It could 

assist with early diagnosis, intervention and treatment and 

prevent unnecessary admission to hospitals, enabling efficient 

medical and healthcare resources. Recent advances in wearable 

sensors and mobile computing technology can considerably 

transform and benefit out-of-hospital care. In this work, we 

demonstrate an out-of-hospital body movement data collection 

mobile application which utilizes the cutting-edge 

nanotechnology-based E-Skin sensors. We also describe and 

demonstrate the real-world application of the E-Skin sensors to 

continuously detect, measure and analyze body movements.  

Keywords—E-Skin sensors, body movement, out-of-hospital 

I. INTRODUCTION  

Chronic musculoskeletal pain (CMP) such as chronic low 
back pain and knee pain are the leading causes of disability 
around the world [1]. CMP has become a heavy burden on 
individuals due to the expensive diagnosis, treatment and 
rehabilitation costs and work absenteeism[2]. Traditional CMP 
management requires patients to visit doctors regularly to 
monitor their physical conditions or rehabilitation progress. 
However, the uneven distribution of health resources and 
health services makes it difficult for the patients who live in 
less developed regions or remote areas to have access to the 
healthcare services [3], [4]. Therefore, an out-of-hospital CMP 
management system can extremely benefit these patients by 
allowing doctors access data to monitor their physical 
conditions and rehabilitation progress remotely. 

Recent studies show that physical activity is one of the 
major risk factors for developing CMP[5], [6]. Traditional 
CMP management use self-reported surveys and interviews to 
collect physical activity data at larger intervals (for example 
weekly monthly, or 3 monthly). The accuracy of the collected 
data is not guaranteed because most questions rely on patient 
recall. Physical activity data (occupational and recreational) is 

vital for helping medical professionals to have a better 
understanding about the relationship between CMP and 
physical activity. The collected physical activity data also 
contains personal information for doctors to tailor a 
personalized treatment for individuals. 

Physical activity is constituted of different body 
movements. Many wearable sensors are capable of detecting 
and measuring body movements, such as vision-based 
systems[7] and inertial measurement units (IMUs) based 
systems[8]. However, there are some major drawbacks with 
these systems: 1) vision-based systems are limited to the 
laboratory setting and highly sensitive to the light condition; 2) 
IMUs based systems are built with rigid package which make 
them uncomfortable for long time use; 3) these systems are 
costly considering both hardware and software. With the 
advances in wireless sensing technology and mobile 
computing, electronic-skin [9] (E-Skin) wearable sensors have 
gained popularity. This is due to their intrinsic characteristics, 
such as high sensitivity, stretchability, and low-cost, which 
enable them to offer a second skin like feeling during the 
measurement [10]. Additionally, E-Skin sensor is capable of 
detecting slightest movements and has a quicker response time 
to body movement comparing to IMU based sensors. By using 
a simple Bluetooth module, the measured data can be 
wirelessly transmitted to any data processing device such as a 
smartphone or a tablet for establishing a pervasive body sensor 
network. The E-Skin sensors have been reported in different 
measurement scenarios, such as pulse signal detection [11] and 
finger movement detection [12]. However, only limited studies 
have considered the potential of using E-Skin sensors as an 
alternative to detect, measure and analyse body movements[9].  

This paper introduces a body movement data collection 
mobile application using E-Skin sensors as part of the out-of-
hospital CMP management system. The contributions of this 
study are: 1) the development of an objective body movement 
data collection approach for out-of-hospital CMP management; 
2) implementation and empirical testing of the mobile 
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application with comparison to existing body movement 
measurement sensors.  

II. SYSTEM DESIGN 

A. E-Skin Sensor Design 

In this study, we used a graphite microflake hybrid 
conductive network-based strain sensor based E-Skin wearable 
sensor. It is developed by Monash University NanoBionics 
Group[13]. A silver paste is applied on both ends of the U-
shaped strain sensor. After attached the electronic module, it is 
encapsulated under sports kinesiology tape. The electronic 
module is an nRF51822 Bluetooth Low Energy (BLE) system 
on chip (SoC) from Nordic semiconductor obtained from a 
distributor, Raytac Corporation [14]. It provides the capability 
of wirelessly transmitting the measured data to any BLE 
device, such as smartphones, which makes it extendable to a 
Wireless Body Sensor Network (WBSN) for monitoring the 
physiology signal of human body. In this work, we used a 
Samsung S7 smartphone to collect the measured data from 
three E-Skin sensors simultaneously.  The transmission rate of 
each E-Skin sensor is set to 15Hz because of the smartphone 
BLE throughput limitation. E-Skin sensor has a 40 mAh 
lithium polymer battery. According to our lab test, it can be 
used continuously for one week on a single charge. The 
dimension of the E-Skin sensor is 120mm × 25mm × 2mm. 
The details about the calibration and validation of E-Skin 
sensors can be found in [13].  

B. Body Movement Data Collection Mobile Application  

As shown in Fig. 1, the body movement data collection 
mobile application consists of three major modules: 1) Data 
Pre-processing Module; 2) Body Movement Recognition 
Module; and 3) Body Movement Characteristic Extraction 
Module. 

The Data Pre-Processing module is responsible for 
transforming raw multivariate time series data into processed 
time series data. The E-Skin sensor measures the skin 
deformation. The characteristics of the outputs are similar to 
the IMU sensors. The pre-processing of this type of signals 
involves de-noising, calibration, normalization and 
synchronization. The pre-processed data is then analysed in the 
Body Movement Recognition Module. 

The Body Movement Recognition Module generates the 
classification results based on the data input and selected 
features. The performance of multiple classifiers such as SVM 
and Random Forest are tested and compared. The best trained 
model are used in this module. The classified body movements 
are then segmented and analysed by the Body Movement 
Characteristic Extraction Module.  

The Body Movement Characteristic Extraction module 
analyses each movement and calculates the characteristic of 
each movement such as speed, acceleration, angle, intensity 
and dimension. The speed refers to the average speed of the 
movements. The acceleration refers to the speed changes 
during the movements. The angle refers to the maximum 
anatomical joint angle of the movement and the dimension 
means the direction of the movements such as left or right.  

 

Fig.1. Body Movement Data Collection Application Architecture 

 

Fig.2. Sensor Placement 

 These characteristics are calculated based on the E-Skin 
outputs and actual anatomical angle mapping model. This 
model is established by a series of experimental results. In the 
experiments, we compared the E-Skin sensors with a IMUs 
based body movement monitoring system (ViMove, DorsaVi, 
Australia) [15]. We used ViMove as the golden standard 
because it is clinically validated. We compared the results of 
two lumbar-pelvic movements measurements including flexion 
and lateral flexion. The sensor placement is shown in Fig. 2.  

As shown in Fig. 3, there are regular data patterns that can 
be derived from E-Skin outputs considering different 
movements. For example, we can identify the flexion based on 
the patterns in the bottom E-Skin outputs and identify left and 
right lateral flexion based on the regular patterns of left and 
right E-Skin outputs. According to the results of linear 
regression, shown in Table I, the E-Skin outputs has a 
relatively linear relationship with the actual anatomical angle 
(measured by ViMove). The results show that E-Skin sensor is 
capable of detecting and measuring different body movements. 
Based on this finding, we can establish the mapping model 
between E-Skin outputs and actual anatomical angle that is the 
key component of the body movement data collection 
application. 
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Fig.3. Sensor Outputs for Flexion and Lateral Flexions (left and right) 

TABLE I.  LINEAR REGRESSION RESULTS 

Independent R R2 Adjusted R2 Std. Error 

Flexion 

Bottom E-Skin Output 0.894 0.799 0.798 8.9508 

Left Lateral Flexion 

Left E-Skin Output 0.817 0.667 0.665 5.6078 

Right E-Skin Ouptut 0.832 0.692 0.690 5.3957 

Both 0.893 0.798 0.796 4.3810 

Right Lateral Flexion 

Left E-Skin Output 0.798 0.637 0.635 6.4473 

Right E-Skin Ouptut 0.496 0.246 0.243 9.2878 

Both 0.804 0.646 0.643 6.3804 

III. DEMONSTRATION CONTENT 

Our demo consists of two parts: First we will show the 
performance of our data collection application on knee 
movements. In this part, we will use both E-Skin sensors and  
ViMove system. The sensors will be attached on one of 
subject’s leg. The subject will be instructed to sit on a fixed 
chair and bend his/her knee from 90 degrees to 180 degrees. 
We will present the comparison of the results from both E-Skin 
sensors and ViMove system. Second we will present the 
performance of our data collection application on lumbar-
pelvic movements detection and measurement. In this part, we 
will attach three E-Skin sensors on the subject’s back and 
instruct him/her to do each flexion and lateral flexion for five 
times. The real-time collected data will be shown with an 
Android phone. Then we will run the analysis module to 
generate a measurement report for the detected movements and 
their calculated characteristics.  

IV. CONCLUSION 

This paper demonstrates the design of an out-of-hospital 
body movement data collection mobile application with E-Skin 
sensors. Compared to traditional body movement measurement 
sensors, the total cost of E-Skin sensor is around 20 AUD 
which is cheaper than ViMove and it is more comfortable for 
long time use according to the feedback from the experiments’ 

participants. With the BLE SoC, E-Skin sensor can wirelessly 
connect to a smartphone and transmit the measured data. E-
Skin sensor also has a longer battery life for continuously 
monitoring over one week. By using multiple E-Skin sensors, 
we are able to detect different body movements and calculate 
the characteristics of each movement. The body movement 
data collection mobile application described in this paper could 
contribute significantly to the out-of-hospital CMP 
management and improve efficiency of health resource 
distribution by enabling continuous and remote monitoring of 
patients’ physical activity from the comfort of their homes. 
Additionally, this paper provides empirical evidences for future 
research using similar sensors like E-Skin in healthcare. 
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