
REMINISCE: Transparent and Contextually-Relevant
Retrospection

Sangsu Lee, Tomasz Kalbarczyk, and Christine Julien

The University of Texas at Austin
{sethlee, tkalbar, c.julien}@utexas.edu

Abstract—Many envisioned applications of pervasive comput-
ing, from smart personal assistants to interaction in the IoT,
assume the ability to assess the context and provide data and
services relevant to that context. As a demonstration of needed
practical support for seamless context-based interaction, we
present REMINISCE, an application that allows users to look
back on their memories by prioritizing photographs that were
taken in contexts that are similar to the current context. While
we focus on the use of context to draw up photographic history,
the vision behind REMINISCE is more general. We describe
how REMINISCE is built on a contextual database middleware
that provides context storage and context-sensitive queries that
determine the similarity between pairs of contexts. REMINISCE
uses the contextual database to store the contexts of a user’s
photos, which include location, time, neighboring devices, and
weather conditions. Later, the app identifies the photos whose
stored contexts are most similar to the user’s current context
by querying the contextual database; this query uses a context
similarity function to compare entries in the database to the
user’s current context. During the demonstration, visitors will
be able to interact with the app on the spot with auto-generated
contexts and an on-device context simulation.

I. INTRODUCTION

The proliferation of sensor-rich mobile devices and the ad-
vent of the Internet of Things entail applications that demand
expressive context-awareness [9]. A context-aware device has
the potential to support features such as envisioned in antic-
ipatory computing [8]. In fact, it is increasingly common for
mobile devices to provide information and services context-
dependently like Android Smart Lock1 and Google Now2. The
REMINISCE app showcased in this paper will demonstrate yet
another use case for this context, in particular, how context
can be used to transparently recall information that is relevant
in the user’s current context. The primary objective of the
REMINISCE app is to recommend and display the photos
that are the most relevant to the user’s current context as a
way to encourage the user to look back on past events. The
photo could be taken in the same place, at a certain time
of the year, or with the same group of friends. In addition,
REMINISCE may recall a photo taken in a same weather, as
weather conditions are known to trigger memories [11]. While
the REMINISCE app is playful, the more generic goal is not:
the app’s use of context is a stepping stone on the road to
in situ context-based authorization, a holy grail of seamless

1https://support.google.com/accounts/answer/6160273?hl=en
2https://en.wikipedia.org/wiki/Google Now

interaction in the emerging Internet of Things [4], [3], [12].
Context-based authorization is a subset of access control
that is specific to the mobile IoT setting, where attributes
are permutations of context information. This work remains
theoretical and without concrete mechanisms for deriving
attributes from real-world context, a gap we seek to begin
to fill with the implementation of REMINISCE. Penumbra [5]
associates tags with user data to derive attributes and guide
access control policies, but tags must be manually generated.
Others have investigated mining attributes from existing access
control logs [6], [14], but these rely on the existence of
more primitive access control mechanisms (e.g., role-based
access control). Other approaches seamlessly generate access
control policies for limited use cases [2], [7] without explic-
itly deriving attributes. Without a mechanism for validating
context, these approaches are susceptible to attackers spoofing
contextual data to circumvent access protocols. REMINISCE
serves as a prototype to demonstrate the first step in our
approach to context-based authorization. It shows how we can
utilize attributes that are derived from contextual data to help
users transparently recall memories; in the future, these same
attributes could be used to seamlessly generate fine-grained
access control policies. We next overview the REMINISCE app,
then describe the technical details of its implementation and
close with a description of the intended demonstration.

II. OVERVIEW OF REMINISCE

To track the photos’ contexts provide context-based rec-
ommendations, REMINISCE relies on a contextual database.
This database, CONTEXTDB, maintains a mapping of user-
generated content (i.e., photos) to context data; the latter is
stored using a vector space model. The types of context the
middleware supports are called context attributes [9]. When a
new content item is created, the database gathers the current
context information to associate with the new entry. In other
words, every entry has a context stamp mapped to a content
item in storage. Each context stamp can include multiple
context attributes, all of which together capture the state of
the world at the time the content item was created.

Our current version of CONTEXTDB stores the exact con-
text stamp for each data item. In the future, we will explore
lossy versions in which a given context stamp may be con-
sidered redundant if it is sufficiently similar to one already
stored [13]. Instead, a new content item can be associated with

Demonstration on Pervasive Computing and Communications 2019

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 355

Fig. 1: Architectural Overview of REMINISCE

the previously captured context stamp. This will both reduce
the storage overhead for CONTEXTDB and the query overhead
for retrieving context matches from CONTEXTDB.

During a context query, an application specifies a set of
context attributes to consider (i.e., a subset of those available).
A query outputs pieces of content (i.e., photos) that were
created in a context that is similar to the current one. Internally,
REMINISCE relies on a measure of contextual similarity. A
simple use case of this approach is to categorize and manage
files based on the places in which the user accesses them
(e.g., office and home); by incorporating more measures of
the environment, one can envision implementing expressive
context-based access control [1], [10].

III. IMPLEMENTATION

The implementation of REMINISCE is split into two pieces.
The first piece, transparent to the user, is our CONTEXTDB,
which is built specifically to maintain context stamps to
support seamless queries from context-based applications.
The second piece, visible to the user, is the REMINISCE
app itself, which exemplifies an application able to leverage
CONTEXTDB to seamlessly (with respect to user interaction)
perform operations that rely on contextually-tagged data.

A. The CONTEXTDB Middleware

CONTEXTDB retrieves and processes raw contextual data
and associates the context with a data blob such as a photo.
Each context attribute is represented by a normalized context
vector, p̂j = (x1, x2, . . . , xl), where l is a dimension of
context attribute j and xk ∈ IR. Context vectors are nor-
malized so that the influence of each attribute can be treated
equally when REMINISCE aggregates across attributes. Gen-
erating context vectors that are inter-operable despite different
semantic meaning requires pre-processing and normalization
steps that depend on characteristics of the raw attributes. For
example, the context vector for a GPS location is derived
by converting raw latitude and longitude into the Cartesian
coordinate system such that x, y, and z are all normalized.
Contexts like neighboring devices and weather can instead be

denoted as bit vectors. For instance, pneighbors = (1, 0, 1)
indicates that of the three known potential neighbors, two are
currently present. Multiple context vectors are joined to form
a single context stamp that represents the device context at a
fixed point in time. The context stamp for a given data blob is
an aggregation of the context vectors for all m context types:
P =

[
p̂1 p̂2 · · · p̂m

]T
. An instance of CONTEXTDB is

then composed of blob-context pairs and can be denoted as:

D = {〈d(1),P (1)〉, 〈d(2),P (2)〉, . . . , }

where the superscript is simply an index into the database.
A key requirement of REMINISCE is to determine how

similar two context stamps are. The similarity of a pair of
context vectors is defined by a function

s(p̂
(i)
j , p̂

(c)
j) = p̂

(i)
j · p̂

(c)
j ,

where p̂
(c)
j is a context vector in the current context stamp.

The function satisfies the condition −1 ≤ s(p̂
(i)
j , p̂

(c)
j) ≤ 1.

The output 1 indicates completely identical context vectors,
while −1 denotes the lowest possible similarity.

Given a context stamp P (c) capturing the current contextual
state, the similarity to an entry P (i) ∈ D is:

Sc(P
(i),P (c)) =

1

m

m∑
j=1

ωjs(p̂
(i)
j , p̂

(c)
j),

where m is the total number of attributes. Contextual similarity
for individual attributes is weighted using a constant ωj , where∑m

j=1 ωj = 1. When a CONTEXTDB query uses only a subset
of attributes of size ms, to determine similarity, weights are
normalized so that they satisfy

∑ms

j=1 ωj = 1. In practice, ωj

reflects the relevance of attribute j.
Queries to CONTEXTDB consist of two inputs: a threshold

for desired context similarity, τ , and a context stamp repre-
senting the current set of observable context attributes, P (c).
Based on these inputs, the query result, Q, is defined as

Q = {〈d(i),P (i)〉 ∈ D |Sc(P
(i),P (c)) > τ}

The output consists of a set of data blobs, d(i), whose
associated context stamps satisfy the similarity threshold.

B. The REMINISCE App

To demonstrate the function of CONTEXTDB, we built the
REMINISCE photo recall app3. For testing and demonstra-
tion purposes, REMINISCE includes the ability for the user
to visualize all of their data blobs (i.e., photos) and their
associated context stamps. While CONTEXTDB can handle
generic context data, the REMINISCE app currently utilizes
four context attributes: location, time, nearby devices, and
weather. When the user takes a photo with the REMINISCE app
or queries REMINISCE for photos similar to the current con-
text, CONTEXTDB fetches contexts from on-device sensors.
In particular, CONTEXTDB uses GPS and Android’s location

3The REMINISCE app and the CONTEXTDB are available publicly:
https://github.com/UT-MPC/Reminisce.

Demonstration on Pervasive Computing and Communications 2019

356

(a) A user can open album or
camera from the main view

(b) REMINISCE provides a
variety of testing capabilities

Fig. 2: Main window of REMINISCE

services API to acquire the exact location. Weather context is
obtained from an online service based on the location. Finally,
CONTEXTDB uses Bluetooth Low Energy (BLE) beacons
from nearby devices to derive the neighbor context.

In the main window of REMINISCE, a user may choose
to take a photo or see an album (Fig. 2(a)). The icon on the
upper left corner opens the menu for testing and demonstration
(Fig. 2(b)). The button in the center of the main window leads
to the album view, which is shown in Fig. 3.

REMINISCE’s album view consists of icons that represent
the four context attributes it supports, shown across the top.
REMINISCE shows the stored photo that has the context most
similar to the current context. The user can swipe left to
see the photo with the next most similar context. As the
user swipes through the stored photos, the icons associated
with context attributes of the photo that have a similarity that
satisfies s(p̂(i)

j , p̂
(c)
j) > τj are highlighted. In Fig. 3(a), the

icon depicting location is highlighted, indicating that the photo
was taken at a location close to the user’s current location.

The four icons are also buttons the user can toggle. When
they are disabled, REMINISCE does not consider the corre-
sponding context attribute. For instance, when the location
context icon (the first icon from the left) is disabled (as shown
in Fig. 3(b)), only the three remaining contexts are taken into
account. Black or grey bars under the icons indicate whether
the context attribute is enabled.

IV. DEMONSTRATION AND TECHNICAL REQUIREMENTS

Visitors will interact directly with the app. Visitors may
experiment the app themselves with extra functionalities of
REMINISCE by opening a navigation menu. The menu has a
list of actions for testing the app. Using the testing menu,
users can see a list of all photos, which also displays the
context data for each photo when it is selected. Users can also
modify the current context of the device, which will allow
the user to simulate varying contexts without the user having
to physically move. Visitors can also download test photos

(a) Icons show which context
matches the current context

(b) A context attribute can be
enabled/disabled

Fig. 3: The album view of REMINISCE

to seed the demonstration. The test photos will be stored in
CONTEXTDB with random contexts relevant to the context of
the conference. Lastly, contexts or photos can be deleted.

We will bring our own Android devices for the demonstra-
tion. However, any Android device with BLE support can run
the app. A user has to allow permissions for location, camera,
accessing data and phone state, and Internet.

REFERENCES

[1] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich. Crêpe: A
system for enforcing fine-grained context-related policies on android.
IEEE Trans. on Info. Forensics and Security, 7(5):1426–1438, 2012.

[2] A. Gupta, M. Miettinen, N. Asokan, and M. Nagy. Intuitive security
policy configuration in mobile devices using context profiling. In Proc.
of SocialCom, pages 471–480. IEEE, 2012.

[3] V. C. Hu et al. Guide to attribute based access control (abac) definition
and considerations (draft). NIST special publication, 800(162), 2013.

[4] J. Hur and D. K. Noh. Attribute-based access control with efficient
revocation in data outsourcing systems. IEEE Trans. on Parallel and
Dist. Sys., 22(7):1214–1221, July 2011.

[5] M. L. Mazurek, Y. Liang, W. Melicher, M. Sleeper, L. Bauer, G. R.
Ganger, N. Gupta, and M. K. Reiter. Toward strong, usable access
control for shared distributed data. In Proc. of FAST, 2014.

[6] E. Medvet, A. Bartoli, B. Carminati, and E. Ferrari. Evolutionary
inference of attribute-based access control policies. In Proc. of EMO,
pages 351–365, 2015.

[7] M. Miettinen, S. Heuser, W. Kronz, A.-R. Sadeghi, and N. Asokan.
Conxsense: Automated context classification for context-aware access
control. In Proc. of ASIACCS, pages 293–304, 2014.

[8] V. Pejovic and M. Musolesi. Anticipatory mobile computing: A survey
of the state of the art and research challenges. ACM Comput. Surv.,
47(3):47:1–47:29, Apr. 2015.

[9] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context
aware computing for the Internet of Things: A survey. IEEE Commu-
nications Surveys & Tutorials, 16(1):414–454, 2014.

[10] G. Russello, M. Conti, B. Crispo, and E. Fernandes. Moses: supporting
operation modes on smartphones. In Proc. of SACMAT, 2012.

[11] W. van Tilburg, C. Sedikides, and T. Wildschut. Adverse weather evokes
nostalgia. Personality and Social Psychology Bulletin, 2018.

[12] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for
attribute based access control. In Proc. of FMSE, pages 45–55, 2004.

[13] N. Wendt and C. Julien. Paco: A system-level abstraction for on-loading
contextual data to mobile devices. IEEE Trans. on Mobile Comp., 2018.

[14] Z. Xu and S. D. Stoller. Mining attribute-based access control policies.
IEEE Trans. on Dependable and Secure Comp., 12(5):533–545, Sept
2015.

Demonstration on Pervasive Computing and Communications 2019

357

