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Abstract—We envision a future with companies providing civil-
ian drone services to people - e.g., photo-taking on-demand for
tourists from impossible (such as from off-the cliff) perspectives,
object inspection, delivery, guarding, or helping someone check
something out remotely. The broad aim of our work is to provide
a framework for the cooperation between one or more stations
and one or more drones as they are allocated to tasks. This paper
has two contributions: (1) we propose a two-layered task servicing
a model that couples the ”big picture” across-drones perspective
of drone stations, and the dynamic local perspective of drones, in
order to decide which task a drone should serve next, where tasks
are first allocated to a drone’s task set via an on-station strategy,
and then drones select tasks to serve from their respective task
sets via an on-drone decision-making strategy, and (2) we report
on our preliminary results on simulations to assess the impact
of different station strategies (i.e., round-robin vs. serve-near), a
selected drone strategy (i.e., utility function based), for different
kinds of client distributions (i.e., random, scatter-near, scatter-
middle, and scatter-far), and for different numbers of drones.
Our results show that the round-robin system performs better
in most situations than serve-near for the allocation strategy.

Index Terms—drone, UAV, drone services, on-station decision-
making, on-drone decision-making

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV), or also known as drones,
are likely to become an important type of vehicle in the
developed urban environment of the future. There are various
studies that use different methods to increase use of drones
in a smart city [1] by introducing new properties that allow
drones to be more self-aware [2], [3], [4]. Drones can be
used in the context of service delivery where they undertake
different types of tasks at varied locations. We argue that in
order to deliver a service, the decision process requires two
main components: On-Station allocation of tasks/requests to
drones (or how tasks are added to the workload, or task set, of
each drone) and On-Drone decision-making (to decide which
tasks/requests to next handle within a drone’s workload). There
are various aspects involved in each component, some of these
aspects are crucial to the component itself and others can be
shared amongst both. For example, drones could experience
anomalies during flight, such as, inner failure, changes in the
environment, or communication issues so that decisions need
to be quickly made on the drone itself while in-flight [2].

In a previous study [5], we showed that the stations location
could play a key role in processing orders. Also, the number

of stations and the number of drones at each station may
significantly affect the process of making decisions. There are
four scenarios to be considered: Single Station - Single Drone,
Single Station - Multiple Drones, Multiple Stations - Single
Drone, and Multiple Stations - Multiple Drones. Other factors
that may affect the decision in the context of drone service
delivery are discussed in Section III-D.

We investigate possible strategies for a station to allocate
received tasks/requests to its collection of drones, given each
drone also has its own decision-making module (to select the
next task/request it will serve from its allocated set), and to
identify some common factors that may affect the decision-
making processes when deploying drones to serve people.
We present preliminary results on how different on-station
drone strategies work, where the drones and the stations have
their own strategies, but are coupled together within the one
framework.

II. A TASK SERVICING MODEL FOR STATION AND DRONE
STRATEGY COUPLING

A. Overview

The decision-making model consists of two main layers as
shown in Figure 1, these are the stations and drones. Each
component consists of a set of instructions (On-Station & On-
Drone) taking aspects such as the number of stations and the
number of drones into account.

B. Station Centre (SC)

The SC is responsible for receiving requests that come
from clients. These requests can be handled in various ways.
Depending on the factors that may affect the decision process,
SC has two states; Idle, where SC waits for upcoming requests,
and Processing, where SC makes the decision either to send
the order to an individual station instance or an individual
drone.

C. Drone

A drone has four main states; AtStation, OnRouteToClient,
ServingClient, and OnRouteToStation. It can receive instruc-
tions in any state and then it has to decide which request to
serve, upon receiving the request from the SC or an individual
station.
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Fig. 1: Two-Layered decision model for task servicing by
drones.

D. Simulated Study Area

In order to provide a better understanding of the decision-
making model. We have assumed the study area to be a square
with a side length of L. Stations can be located at the edge
or anywhere within the area [5]. Clients can be located in
the area using different distributions such as random, scatter-
near, scatter-middle, and scatter-far as shown in Figure 2, with
station marked “x”.

(a) Random (b) Scatter-Near

(c) Scatter-Middle (d) Scatter-Far

Fig. 2: Clients’ distributions

III. EXPERIMENTATION

A. Overview

The process of determining which task a drone should serve
next involves considering a range of factors, constraints, and

the objective function. The objective of the task servicing can
vary from seeking a particular value, minimisation or max-
imisation. This section presents the common factors involved
in the decision-making process followed by two objective
functions. It then presents our simulated approach for coupling
the decision-making process of the stations with drones using
the AnyLogic1 simulation tool. Our study simulates drones
servicing clients with requests/tasks for a one hour period -
we study the system behaviour focusing on the number of
served requests, total revenue generated and the total time that
a client has to wait to be served, from issuing the request until
the drone’s arrival.

B. Objectives

There are lots of objectives that are possible for drone
service providers. For the purposes of this experiment, we
have set the following two objectives: (1) maximise profit,
and (2) minimise the travel distance. It is likely that these
objectives will be included in almost all commercial drone
service deliveries.

C. Implementation

We study different strategies for the station centre allocating
requests to drones to enhance drone services delivery. In the
study area with (L = 1000 m), the station is located at the
edge and clients are located using four different distributions
as discussed earlier. The steps in running the simulation are:
500 clients periodically send requests to the SC at an average
rate of α = 1 request per hour. Once a request is received, the
SC needs to decide which drone need to service the request. It
then forwards the request to the shortlisted drone. A number
of drones (i.e., 2, 4, 6, 8, 10) were used, where each has a
speed of 10 m/s, a processing time of v seconds and a battery
life of one hour. Once a drone receives the request, it has
first to decide whether it should queue the job (based on the
acquired strategy) or proceed to the client if there is no orders
in the queue. If a drone battery is insufficient, SC will not
assign more requests to it. As the simulated time period is for
an hour, in this study, we assumed that all drones are capable
of handling the assigned tasks.

1) SC strategies: In this experiment, we only consider
the case of Single station - Multiple drones scenario. The
individual station can then assign a task to a drone based on:

• A round robin system where tasks are distributed cycli-
cally to the available drones, in turn.

• Proximity to the client requesting the task to be done,
where the nearest drone to the client will be in assigned
to the task.

2) Drone strategies: In this experiment, we only consider
two factors to build the drones strategies for handling the
upcoming requests: distance-based and value-based (financial
incentive). Each order request has a value (v) and a determined
distance (d). Since there are multiple attributes, for the sake of

1https://www.anylogic.com
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simplicity, we have described the variables and the parameters
to run the experiment below.

Distance Scale (dS): As mentioned earlier, the study area
(i.e., a square) has a known length of L, so the maximum
distance (dmax) that a drone can travel to is the diagonal of
the area (L

√
2). So to scale each order based on the proximity

of the drone, we calculate it as shown in (1):

dS(r) =
d(r)

dmax
(1)

where d(r) represents the distance between the drone at its
current location when dS is computed, and the client with
request r.

Value Scale (vS): Each order has a value ranging from vmin

to vmax. We divide the value of the request r (v(r)) by vmax

to standardise the value of the current job as in (2), where v
represents the value of the order that has been received:

vS(r) =
v(r)

vmax
(2)

Note that in our simulation, time spent by a drone at the
client’s location for a request r depends on its v(r).

Preference weights (w): Preferences or priorities values
for both distance (wd) and value (wv) are weighted equally
in our simulation study here (though other weights can be
experimented with), where:

wd + wv = 1 (3)

Utility function (U ): We need to consider the scale values
and preference values in computing the utility for each request
that has been received (r).

U(r) = wd · dS(r) + wv · vS(r) (4)

Processing:There are 5 scenarios to be considered in drone
orders processing:

1) Request received while the drone is at the station - drone
will go to the client

2) Request received while the drone is serving another
order - drone will add the order to its requests list.

3) Request received while the drone is going back to the
station - drone will go to the client.

4) Request received while the drone is on route to a client.
In this case, drone uses the utility function to compute
the request with the highest utility U.

5) The drone finished the current request but still the
requests list is not empty - the drone will pick up the
next order of highest utility.

D. Common Factors

The most common factors in decision-making in the context
of drone services delivery (for SC and/or drone) are:

• Power and battery life: Drones or stations need to
consider the available level of power (i.e., battery life
left, consumption rate and charging rate if applicable) in
the context of the service. If the drone does not have
sufficient power to carry out the task then it would make

sense for the drone not to undertake that task. If a drone
accepts a task which it is not able to carry out fully, then
this could be counterproductive.

• Distance: The distance between the client and the station,
the distance between the client and the current drones
location, and the distance between the current drones
locations and the station are essential factors in making
decisions about drone service delivery.

• Financial incentive: The amount of value or financial
incentive associated with a particular service request can
determine the amount of resources allocated to a job
in the context of commercial jobs. For example, the
decision-making process can be driven by different rules
in cases of high value service requests.

• Range: The range in this context is not defined as the
distance that the drone is able to cover with the available
battery life, but maximum distance that the drone needs
to be away from its controller before it loses connectivity
with its controller. Whilst there is a lot of drones which
no longer need to be in the proximity of the controller,
there are still drones which needs to be within range of
their controllers [6]. In our simulated study, we assumed
that all drones are within the communication range of
their station.

• Environmental factors: Environmental factors can be
natural factors like temperature, pressure, visibility, and
humidity; or factors like no-fly zones. The drone can
receive environmental factors through sensors it might
have or through data feeds from external sources. It is
important for the drone to consider the environmental
factors for a number of reasons, some of these are: to
prevent damage to itself, to ensure the quality of the
task that the drone has been assigned, and to ensure the
legality of the operation. In this study, we assumed that
drones operate with no environmental restrictions.

E. Results and discussion

The simulations were run with Anylogic software for var-
ious combinations of station and drone strategies, and for
different numbers of drones. As mentioned previously, the
station has two strategies it can follow, i.e., round-robin (R-R)
and serve-near (S-N). The drone can follow many strategies;
we have chosen the utility value based strategy for the ex-
perimentation. Table 1 shows the results of the simulations
for scenarios with 2, 4, 6, 8 and 10 drones; four types of
client distributions of random, scatter-near, scatter-middle and
scatter-far; and the numbers of served orders and total profits
corresponding to the station strategies of R-R and S-N.

The results of the analysis in Table 1 indicates that on
average, more orders are served and more profit is generated
when the station assigns jobs based on R-R as opposed to S-N.
The distribution of the client does not have much impact on
the number of orders served and profit generated under R-R.
However, under S-N, there is high variability in the orders
served and profit generated by the client distribution. The
number of orders served, and profit generated increased with
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TABLE I: Results for different strategies

#Drones Distribution # Served orders Total Profit
S-N R-R S-N R-R

Random 126 130 6820 6830
2 Drones Scatter-Near 128 126 6760 6940

Scatter-Middle 109 127 6220 6960
Scatter-Far 64 133 3510 6870
Random 236 234 12670 13390

4 Drones Scatter-Near 215 241 12040 13690
Scatter-Middle 152 245 8620 13640
Scatter-Far 129 249 6630 13630
Random 267 349 15640 19430

6 Drones Scatter-Near 232 357 13170 19820
Scatter-Middle 207 353 11550 19870
Scatter-Far 122 365 6850 19850
Random 238 454 12840 24780

8 Drones Scatter-Near 265 463 14980 25100
Scatter -Middle 188 461 9980 25100
Scatter-Far 120 462 6660 25050
Random 279 491 14680 26560

10 Drones Scatter-Near 280 492 15000 26580
Scatter-Middle 117 491 5830 26560
Scatter-Far 68 491 3500 26560

an increase in the number of drones for R-R, but this is not
necessarily true for S-N, the reason being that, a drone can
be overwhelmed with many orders just because of its current
position.

Figure 3 shows the average clients’ waiting time for each
strategy and distribution. The clients’ waiting time is an
important measure of the quality of drone service as it is
directly related to client satisfaction. Longer waiting times are
often associated with relatively lower customer satisfaction [7].
Therefore, the client waiting time has been chosen to assess the
merit of each strategy and distribution. Only the served orders
were considered in the calculations of waiting times. The
results of the analysis indicate that, in general, the minimum
waiting time for all four distributions has been obtained for
the 10-drone scenario when using R-R. Additionally, there is

Fig. 3: Average client waiting time for served orders for each
strategy.

a clear relationship between the number of drones and waiting

time for R-R, where the waiting time increases as the number
of drones decreases. For S-N, even with more drones, the
waiting times tend not to decrease since S-N tends to use
drones already deployed rather than drones at the station, so
that S-N tends to under-utilise drones or not utilise all drones.
Also, it can be seen that from 2 to 6 drones, S-N has lower
average wait times compared to R-R, since deployed drones
nearer to the clients are assigned the tasks, rather than idle
drones from the station (in particular, the Scatter-Far scenario).
But then, as the number of drones increased from 6 to 10, the
increased number of drones then compensated for the travel
from the station so that R-R decreases wait times significantly
by better utilising all the drones - in particular with 8 or 10
drones. The above indicates that one can even adapt station
strategies depending on the available drones.

IV. CONCLUSION

This paper provides a framework for the cooperation be-
tween one or more stations and one or more drones. Sim-
ulations were run to assess the impact of the various com-
binations of station strategies and a selected drone strategy,
different client distributions, and different numbers of drones,
on the number of orders served, profit generated and customer
average waiting times. The results have found that for all
kinds of client distributions more orders can be served and
profit generated if the station centre follows the round robin
strategy for job allocation as opposed to the serve near system,
when there are enough drones. The round robin system was
also found to be distribution agnostic which is better in
practical scenarios as the clients could follow any distribution.
Also, using a higher number of drones was also found to
be associated with more orders served, more profit generated
and minimal waiting times for the clients. Future work will
explore other on-station strategies, and on-drone strategies and
how that inter-plays with station strategies, and consider other
urban drone service settings.
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