
Implementation of Platform Controller and Process
Modules of the Edge Computing for IoT Platform

Hidenobu Watanabe
Information Media Center

Hiroshima University
Higashi-Hiroshima, Japan

h-watanabe@hiroshma-u.ac.jp

Tohru Kondo
Information Media Center

Hiroshima University
Higashi-Hiroshima, Japan
tkondo@hiroshma-u.ac.jp

Toshihiro Ohigashi
School of Information and Telecommunication Engineering

Tokai University
Tokyo, Japan

ohigashi@tsc.u-kokai.ac.jp

Abstract—Edge computing requires a flexible choice of data-
processing and rapidly computation performed at the edge
of networks. We proposed an edge computing platform with
container-based virtualization technology. In the platform, data-
processing instances are modularized and deployed to edge nodes
suitable for user requirements with keeping the data-processing
flows within wide area network. This paper reports the platform
controller and the process modules implemented to realize the
secure and flexible edge computing platform.

Index Terms—edge computing, container technology, virtual-
ization, IoT

I. INTRODUCTION

IoT (Internet of Things) devices have been increasing year
by year. In 2020, the 50 billion devices will be connected
to the Internet and the volume of digital data around the
world will be about 40 zettabytes have been predicted [1], [2].
Edge computing requires the capability for deploying various
data-processing demanded as IoT computing appropriately and
rapidly.

We proposed the idea of an edge computing platform based
on functional modulation architecture [3] in 2017. In this
year, we implemented the platform controller (hereinafter
called ”controller”) and process modules (hereinafter called
”modules”) as a prototype. The platform takes advantage
of container-based virtualization technology to allow data-
processing instances to be modularized. Each module provides
a data-processing service such as filtering, data compression,
data storing, security and feedback. The benefit of decompos-
ing data-processing instances into individual service is that
it makes data-processing flows easier to provide according to
various user requirements. This paper reports details about two
components of the controller and modules.

The main contribution of this work is to develop the
controller that can be seamlessly worked with the existing
orchestration tool for container-based virtualization technology
in order to treat an edge processing workflow as a data flow
model according to a user requirement.

The rest of this paper is structured as follows. Section II
introduces the platform controller. Section III explains about
process modules. Section IV indicates the result of simple per-
formance check. Section V shows one of the future evaluation
scenarios. Finally, Section VI summarizes the platform and
future works.

Fig. 1. The component of the platform controller.

II. PLATFORM CONTROLLER

A. Controller Component and System Architecture

We implemented the controller which takes advantage of
Kubernetes1 to manage the whole platform. Fig.1 shows the
component of the platform controller2. Kubernetes (hereinafter
called ”k8s”) is an open source orchestration tool supporting
functions such as container grouping, IP address management,
load balancing and computer resource monitoring for contain-
ers provided by Google Inc. In the platform, the modules
are run on the Docker container. Docker is an open source
system for operating system-level virtualization and provides
lightweight containers which run multiple processes each in
their own isolated user-space instance. The platform also
provides the northbound API and the southbound API. The
northbound API is RESTful API that allows for interaction
with the controller from the user interface which can make
requests of an end user or system administrator. The south-
bound API provided by the K8s API is used for automating
deployment, scaling and operations of modules across edge
nodes located within a wide area network. The novelty of the
controller is to manage association among respective modules
and conditions for the deployment, which allows modules
to be flexibly deployed according to user requirements with
maintaining data-processing flows.

1https://kubernetes.io/
2ANAPLAM is our project codename

PerCom Work in Progress on Pervasive Computing and Communications, 2019

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 407



In the platform, configuration files are provided as a sim-
ple user interface. The configuration files consist of a flow
configuration file and a module configuration file. They are
posted by the northbound API to the controller using HTTPS
request, which its results are replied by HTTPS response. For
the details about the configuration files and the APIs, please
refer to II-B. The k8s follows the master-slave architecture.
The k8s master is the main controlling unit of modules,
managing its workload and directing communication across
the k8s nodes. The k8s node is an edge node where containers
are deployed. Every node runs a container runtime of Docker
for communication with the k8s master over HTTPS. For
smooth control with consistency among the controller and
each k8s node, the controller uses components of k8s control
plane which has a distributed sharing service such as etcd
or a Docker repository. The data-processing flow is a simple
mechanism that is to associate the respective modules in a
way that one module pushes data to the next over HTTPS as
the data pipeline like. In the platform, it assumes that data
is transmitted from IoT devices to modules using JSON over
HTTPS.

B. Configuration Files and APIs

The configuration files are YAML files. Fig.2 shows ex-
ample of configuration files. The flow configuration file is
described by users to define data-processing flow. For example,
a user can define flow information such as a module type,
source IP address of a k8s node that runs the module, a name
of next module, URI for module access and conditions for the
deployment. The module configuration file is used to register
a module with the controller, which allows users to define
module information such as file path of module image or
access control for the module.

Table I shows the API list. The controller provides three
type APIs for k8s node management, module control and flow
control. The API for k8s node management has a ”list” method
which is used to get system information of a k8s node. APIs
for module control have ”get”, ”define”, ”undef”, ”list” and
”update” methods which are used for obtaining of module
configuration information, definition of a module, deletion of
a module or updating of a module configuration etc. APIs for
flow control have ”get”, ”create”, ”delete”, ”list” and ”update”
methods which are used for flow creation or flow deletion etc.

C. Procedure

Fig.3 shows procedure of the controller. It is a premise
that module images are stored in a private repository of the
controller in advance. When the controller receives HTTPS
request posted from the user interface, JSON file is created for
a request to create pod and service which are technical terms
of k8s. The pod consists of one or more containers that are
guaranteed to be co-located on the host machine and can share
resources. In our platform, notice that one pod is one container.
The service is an abstraction function which defines a logical
set of pods and a policy by which to access them, which
provides transparent access without conscious of the number

Fig. 2. example of a flow configuration file (above) and a module configu-
ration file (below).

of pods and location of each k8s node. After receiving the
response from a k8s master node that created pod and service,
the controller setups and runs modules using the configura-
tion files. The platform takes advantage of container-based
virtualization technology to control logical set of modules
easily and simultaneously in addition to maintaining consistent
access from IoT devices to the module even if next module is
rearranged halfway through the flow.

PerCom Work in Progress on Pervasive Computing and Communications, 2019

408



TABLE I
THE API LIST.

API for management of k8s node
Method HTTP Request Argument Return Value (JSON) Description

list GET /nodes none result by command “kubectl get nodes -o json” Get system information of k8s node

API for module control
get GET /modules/moduleId module ID module configuration Get module configuration information

define POST /modules module configuration module configuration Define module
undef DELETE /modules/moduleId module ID success or failure Delete module

list GET /modules none module list Get module list
update POST /modules/moduleId module ID module configuration Update module configuration

API for flow control
get GET /flows/flowId flow ID flow configuration Get flow configuration information

create POST /flows flow configuration flow configuration Create flow
delete DELETE /flows/flowId flow ID success or failure Delete flow

list GET /flows none flow list Get flow list
update POST /flows/flowId flow ID flow configuration Update flow configuration

Fig. 3. procedure of the controller.

III. PROCESS MODULE

We implemented process modules for data processing, feed-
back and security. Table II shows the module list. Each module
meets the API specification described in Table I and the return
value in each module obeys HTTP response code. A user
can describe the particular processing in each module to the
params field of the flow configuration file. In this section, we
explain about the ibe module and the pre module for security
which is characteristic of modules provided by our platform.

The identity-based encryption (IBE) enables to encrypt data
using ID as a public key in contrast to encryption system
based on standard PKI. If there is ID in advance, IBE can
start to encrypt. Thus, in the platform which executes to run
and to stop modules frequently, we consider that IBE is one
of effective security module because that it does not require
to verify a public key using a certificate in a typical after
running a module. We modularized IBE processing such as
encryption, communication and KGC based on encryption
system proposed by Boneh et al. [5]. In an implementation,
we also defined methods for creation and acquirement of a
private key in addition to an internal and external function for

TABLE II
THE MODULE LIST.

Uses Module name function
threshold Filtering and data transfer based

on threshold (if-then type condition
statement).

Data processing comp Data compression by requested algo-
rithm and data transfer using HPACK
as HTTP-based proxy-like.

datastore Data storing to object storage com-
patible with Amazon S3.

Security ibe Data encryption and decryption by
Identity-based encryption in addition
to key generation and key issue.

pre Data encryption and decryption by
Proxy re-encryption

Feedback slacknotify Notification using Slack API.

encryption.

The proxy re-encryption (PRE) is a crypto-system which
allows another user to decrypt a ciphertext which has been
encrypted for one user. In advance, a user is able to create the
re-encryption key using own private key. If a user increased
the number of modules for distributed computing with the
purpose of more high performance, PRE allows the module
to be accessed to previously encrypted data. In the also case
that a user collects modules to one edge node, PRE enables
the authority of decryption for previously encrypted data to
be delegated to another module. Thus, we consider that PRE
is one of an effective security module as same as IBE in
our platform. We modularized the PRE processing such as
encryption, communication and a public key server based on
an encryption system proposed by Ateniese et al. [6]. In an
implementation, we defined parameters for the private key,
public key and re-encryption in addition to an internal and
external function for encryption. The methods for creation,
acquirement and registration of a re-encryption key were also
implemented.

PerCom Work in Progress on Pervasive Computing and Communications, 2019

409



TABLE III
AVERAGE PROCESSING TIME IN EACH API METHOD.

API for module API for flow
define undef list create list
0.26s 0.28s 0.27s 10.23s 0.39s

IV. SIMPLE PERFORMANCE CHECK

As simple performance check, we confirmed processing
time elapsing module deployment controlled through the con-
troller and APIs. We constructed an experimental environment
that has the controller and a client on one VM which has 8
core vCPU, 128GB RAM and 100GB SSD. OS is CentOS
7. In this time, we chose the threshold module from Table
II for the check. As APIs for evaluation, we chose APIs for
module control and flow control from Table I. Notice that we
focused on ”define”, ”undef” and ”list” methods in API for
module control, then ”create” and ”list” methods in API for
flow control. We confirmed the processing time five times in
each API method using ”curl” and ”time” of Linux command.

Table III shows the average time of five times in each API
method. The average process time except ”create” method was
less than 0.5 second. On the other hand, the time of ”create”
method was over 10 seconds. We consider that a download
time of a module image is a factor in many time were spent
because that the client needed to download the image which is
hundreds MB size from a private repository of the controller. If
there is the HTTP cache, download time is reduced. Therefore,
we consider that loading the image onto an edge node in
advance will be one of an effective solution to improve the
time.

V. FUTURE EVALUATION SCENARIO

We are preparing to establish the experiment environment
assuming some evaluation scenarios. Fig.4 shows one of future
evaluation scenarios. As a general scenario, we assume that the
edge node stores sensor data to cloud storage according to user
requirement by if-then module. If the controller monitoring
network condition between the edge node and cloud detects
an increase of network traffic, it changes to data-processing
flows that added the comp module which can shrink data size
to reduce network traffic. If user hopes to ensure confiden-
tiality, the controller will change to the data-processing flows
that added further the ibe modules. We plan to quantitative
evaluation of the performance such as processing time, a load
of CPU, memory and HDD by changing of parameters such
as data size, a frequency of data transmission or location of
module deployment based on the scenario.

VI. CONCLUSION

We implemented the platform controller and the process
modules as a prototype. The platform using container-based
virtualization technology modularizes each data-processing
instances and provides various data-processing services such
as threshold judgment, data compression, data storing, no-
tification, IBE and PRE. The modules are associated as a

Fig. 4. The future evaluation scenario.

data-processing flow according to user requirement by the
configuration files, then are deployed to an edge node within
the wide area network by the controller with keeping the
flow. As a future work, we plan to establish the experiment
environment assuming evaluation scenarios to the wide area
network and quantitative evaluate the performance. As another
work, we will improve the controller to dynamic rearrange
modules in cooperation with the controller and edge nodes.

ACKNOWLEDGMENT

This research and development work was supported by
the MIC/SCOPE #162108102 and JSPS KAKENHI Grant
Number 15K00130, 15K00185, 16H02808.

REFERENCES

[1] Ministry of Internal Affairs and Communications of Japan (MIC),
“White Paper 2014 on Information and Communications in Japan,” 2014,
http://www.soumu.go.jp/johotsusintokei/whitepaper/eng/WP2014/2014-
index.html.

[2] Ministry of Internal Affairs and Communications of Japan (MIC),
“White Paper 2015 on Information and Communications in Japan,” 2015,
http://www.soumu.go.jp/johotsusintokei/whitepaper/eng/ WP2015/2015-
index.html.

[3] T. Kondo, H. Watanabe, and T. Ohigashi, “Development of the edge
computing platform based on functional modulation architecture,” 41st
IEEE Annual Computer Software and Applications Conference, Turin,
Italy, July 4-8, 2017. vol. 2, pp.284-285, 2017.

[4] B. I. Ismail, E. M. Goortani and M. A. Karim, “Evaluation of Docker as
Edge computing platform,” Proc. IEEE Conference on Open Systems,
2015.

[5] D. Boneh and M.K. Franklin, “Identity-based encryption from the weil
pairing, ” SIAM J. Comput., vol.32, no.3, pp.586-615, 2003.

[6] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage, ”
ACM Trans. Inf. Syst. Secur., vol.9, no.1, pp.1-30, 2006.

PerCom Work in Progress on Pervasive Computing and Communications, 2019

410


