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Abstract—Eye gaze tracking has become an prominent re-
search topic in human-computer interaction and computer vision.
It is due to its application in numerous fields, such as the
market research, medical, neuroscience and psychology. Eye gaze
tracking is implemented by estimating gaze (gaze estimation)
for each individual frame in offline or real-time video captured.
Therefore, in order to produce the secure the accurate tracking,
especially in the emerging use in medical and community,
innovation on the gaze estimation posts a challenge in research
field. In this paper, we explored the use of the deep learning
model, Residual Neural Network (ResNet-18), to predict the eye
gaze on mobile device. The model is trained using the large-
scale eye tracking public dataset called GazeCapture. We aim to
innovate by incorporating methods/techniques of removing the
blinking data, applying image histogram normalisation, head
pose, and face grid features. As a result, we achieved 3.05cm
average error, which is better performance than iTracker (4.11cm
average error), the recent gaze tracking deep-learning model
using AlexNet architecture. Upon observation, adaptive normali-
sation of the images was found to produce better results compared
to histogram normalisation. Additionally, we found that head
pose information was useful contribution to the proposed deep-
learning network, while face grid information does not help to
reduce test error.

Index Terms—eye track, mobile, ResNet, deep learning

I. INTRODUCTION

Gaze Estimation is the process of determining either the
3D gaze direction or 2D gaze point that a person is looking
at while considering the detected eyes in images or videos.
In recent years, the gaze estimation is an established and
popular research topic in both human-computer interaction and
computer vision [1], [2].

The study of gaze estimation continues to expand to various
application domains such as psychological research, medical
studies, etc [3]. The reason is that gaze greatly links to
the cognitive behaviour of an individual [4]–[7]. Moreover,
accurate gaze estimation can potentially provide an additional
way to predict how humans interact with new technological
devices. This can be useful especially to people with certain
disabilities.

Gaze estimation research exploits the aspects surrounding
the user’s eyes. They includes the visual of users (shape
of the eye, detected face, head orientation and positioning),
surrounded environment (illumination, device’s camera ori-
entation), etc. D. W. Hansen and Q. Ji pointed out that the
appearance of the eyes changes drastically by the change in
yaw angle [8]. Likewise, the perception of eyes varies by
adjusting the camera from the top to bottom. Traditionally,

the gaze’s input is collected using stationary camera such
as tobii or webcame [9]. Since hand-held mobile devices is
accessible and affordable, gaze estimation research has shifted
its attention to the new device. This introduces new variables
as well as challenges because the device is no longer still.

Another factor that lead to improvement in gaze estimation
accuracy is quantity and quality of data to train the deep-
learning model. Rahayfeh et al. analysed the existing tech-
niques of eye tracking and gaze estimation and concluded that
the majority of studies did not utilize the variation and scale
of the dataset [10]. After that, Krafka et al. have contributed a
massive public dataset called GazeCapture [8] addressing the
issue. The GazeCapture consists of 1474 unique subjects with
more than 2 million samples. It has provided high scalability
and high degree of variation since the data were collected via
crowdsourcing. The team had also developed and trained a
neural network based on the AlexNet architecture [11], called
iTracker. The iTracker model was able to achieve a test error
(without calibration and fine tuning) of 1.77cm and 1.53cm
for mobile phone and tablet device respectively.

This project aims to improve gaze estimation on mobile de-
vices through deep learning, (specifically the Residual Neural
Network [12]) using the public dataset GazeCapture. It is to be
noted that GazeCapture is a public dataset consisting of facial
images and the point of gaze on a variety of Apple devices. It
offers scalability by a large margin compared to other existing
public dataset on eye-screen information. The contributions in
this paper include:

• Removing of incorrect data of blinking frames
• Incorporating normalisation methods for data preprocess-

ing
• Extracting insightful features such as Euler’s angles of

head pose and face grids.

II. METHODOLOGY

A. Data Preprocessing

Fig. 1 illustrates the preprocessing methods that GazeCap-
ture dataset followed before being used as the model’s input.
These methods aims to clean the dataset (Remove Blinking
Frames), extract potential features (Calculate Head Pose), and
reduce the complexity space of the image (Normalization).

1) Removal of Blinking Frames: The frames taken for the
GazeCapture dataset consists of a ‘valid’ tag, which indicates
whether a face was detected by IOS face detector at the point
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Figure 1: Preprocessing Overview

of photo capturing. However, some frames were taken when
the subject was blinking. Thus, eye information in these valid
frames were absent. To remove these blinking frames, we
calculate the Eye Aspect Ratio (EAR) using the dlib library
[13]–[15]. The EAR is a metric that determines a blink using
a threshold, and is derived from the width and height of the
eye shown in Eq. (1).

EAR =
||p2− p6||+ ||p3− p5||

2||p1− p4||
(1)

p1, p2, .. p6 are eye landmarks detected by dlib. Fig. 2
presents the eye landmarks used for EAR calculation. The
EAR threshold used for this project is 0.22, i.e., only valid
frames with EAR values above 0.22 are used.

Figure 2: Calculation of EAR using eye landmarks

2) Histogram Normalisation and Adaptive Normalisation:
To reduce the complexity, the raw images were normalized
to grayscale. The contrast of these grayscale images were
subsequently tweaked to improve performances of the neural
network. This paper explores two normalization technique:
Histogram and Adaptive Equalization. Histogram equalization
adjusts the local intensities by flattening the histogram com-
puted from the image and remapping the intensity values.
Adaptive normalization is similar to histogram equalization,
except multiple histograms were applied to different areas
of the image. Fig. 3 shows the processed images after the
normalization process.

Figure 3: Processed black and white image using Histogram
Normalisation and Adaptive Normalisation

B. Head Pose Estimation

Due to unrestricted user’s head movement, head pose could
be the additional feature to the training model. Hence, the
orientation of head pose was extracted and represented by the
Euler’s angles: pitch, yaw, and roll (Fig. 4). The landmarks
provided by dlib were used to compute the head pose [15].

Figure 4: Head Pose using Euler’s Angles; Pitch, yaw and
roll

C. Residual Neural Network

1) Architecture: Fig. 5 depicts the architecture of the
training model using Residual Neural Network (ResNet) [12].
Compared to the AlexNet structure used for iTracker, ResNet
uses residual blocks to retain to counter the degradation
problem caused by saturated accuracy in deep networks. In
this paper, we uses 18 layers of residual blocks for each input.
It is then followed by the fully connected layers.

2) Training Details:

• Metrics: To ensure uniform prediction space across the
Apple devices with different resolutions and sizes, the
distance from the camera to the point on the screen were
used instead of the basic xy coordinates of the point on
the screen. This metric is provided in the GazeCapture
dataset.

• Loss function: Euclidean’s distance between predicted
(x̄, ȳ) and target (x, y).

• Validation: 10% data are used as validation dataset.
• Learning rate: Initialised learning rate is 0.001 with decay

factor of sqrt(0.1). Minimum learning rate is set to be
0.5e−6.

• Optimiser: Adams optimiser [16]
• Epochs: 100 epochs.

III. RESULTS AND ANALYSIS

A. Effects of removing blinking frames

We compare the test error between before and after re-
moval of blinking frames for both ResNet and re-implemented
iTracker (Table I). From Table I , we can see that the
test error is reduced for both ResNet and iTracker. Fig. 6
visualize the mapping the predicted point to the target point.
This illustration shows that the predicted values are closer to
the targets for cleaned data.
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Figure 5: Architecture Diagram

Table I: Training and test error on before and after removal
of blinking frames for Resnet and iTracker

Results
ResNet iTracker

Frames 150 subjects * 100 frames
Input Images of face, left eye and right eye
Preprocess None Cleaned None Cleaned
Training Error (cm) 0.84 0.65 2.11 0.13
Test Error (cm) 3.38 3.27 4.11 3.36

Figure 6: Visualisation of predicted points mapped to target
points. Top: Resnet vs iTracker using uncleaned data.

Bottom: Resnet vs iTracker using cleaned data

B. Modes of Normalisation

We compare the test error between the two types of
normalization methods. The results in Table II show that
adaptive normalization has helped in reducing the test errors.
In contrary, histogram normalization has aggravated the test
error. Comparing the images normalized in the histogram and
adaptive methods, we believe that the aggravation is due to
the decrease in contrast. Histogram normalization has resulted

in an low-contrast.

Table II: Training and test error on modes of normalisation

Results (Resnet)
Frames 150 subjects * 100 frames
Input Images of face, left eye, right eye
Preprocess Cleaned + Hist Cleaned + Adaptive
Training Error (cm) 0.64 0.82
Test Error (cm) 3.77 3.18

C. Effects of Using Head Pose

Table III shows the results for including head pose (Euler
Angles) as part of training features. It can be seen that
inclusion of the Euler angles had reduced the test errors,
implying that head pose information was helpful. Figure 7
shows the distribution of head pose. The curve suggests that
there were no significant changes in head pose generally.
However, the head pose affects the human gaze.

Table III: Training and test error on using head pose with
images

Results (Resnet)
Frames 150 subjects * 100 frames
Input Images of face, left eye, right eye and head pose
Preprocess Cleaned + Adaptive
Training Error (cm) 0.1
Test Error (cm) 3.05

D. Effects of Using Face Grid

Face grid information was included in the GazeCapture
dataset. The face grid encompasses information on location
and size of the detected face in the full frame. In contrary
to the research on iTracker, introducing face grid information
has slightly increased the test error from 3.18 in Table II to
3.22 in Table IV . This could be due to the lower number of
nodes in the fully connected layer compared to that in iTracker
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Figure 7: Head Pose using Euler’s Angles; Pitch, yaw and
roll

that takes in face grid input. Having more nodes in the layer
essentially allow the model to learn more features. Thus, by
having a lower number of nodes, the proposed architecture
was not able to generalise as good as iTracker when the face
grid information is included.

Table IV: Training and test error on using face grid with
images

Results (Resnet)
Frames 150 subjects * 100 frames
Input Images of face, left eye, right eye and head grid
Preprocess Cleaned + Adaptive
Training Error (cm) 0.38
Test Error (cm) 3.22

DISCUSSION

In this research, we have proven the viability of using
ResNet as deep learning approach to gaze estimation in hand-
held devices. Though preprocessing has helped in lowering
test errors for gaze estimation, these preprocesses take a
significant large amount of time and are not yet feasible to
be implemented in handheld devices. We believe that finding
the optimal contrast can lower the test errors.

Furthermore, to be able to train the full dataset can be
beneficial to generalization performances of the network as
well.

Lastly, we believe the EAR threshold configured can be
improved by computing an optimal EAR threshold for each
subject. This is because each subject have different eye shapes
and those with narrower eyes tend to have smaller EAR,
resulting in many frames from the individual to be rejected.

CONCLUSION

In this paper, we proposed the use of Residual Neural Net-
work (ResNet) to predict gaze point in handheld device using
the massive public dataset, GazeCapture. From the result, the
proposed Resnet framework achieved 3.05cm average error
comparing with 4.11cm average error from the recent gaze
tracking model AlexNet architecture. In addition to the deep
learning architecture, the performance improvement was the

result of exploring the preprocessing techniques such as re-
moving blinking frame, applying normalization, and inputting
features such as head pose and face grid. The effect of
removing blinking frames were proven useful as it provide the
bettter convergence between the predicted points and the target
points. Secondly, the adaptive normalization is beneficial in
generalization performance of the network. Studying the input
features, head pose showed improvements to generalization
performance in ResNet while face grid information did not
help to reduce test error.
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