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Abstract—In this paper, we analyze the feasibility of using
LoRa, an emerging low-power wide-area networking technology,
in indoor localization. We define seven criteria upon which a
wireless technology’s prospect as an indoor localization system
depends largely. For comparison, we take two other popular
wireless technologies (BLE and WiFi) that have been previously
proposed in many modern indoor localization systems. We
deploy these three technologies in multiple line-of-sight and non-
line-of-sight indoor scenarios including corridors, open spaces,
spaces with a varying number of walls, and across floors of
multi-storied buildings. Considering the coverage, stability and
regularity of signals, accuracy of localization, responsiveness,
power, and cost—we conclude that LoRa is a feasible choice for
indoor localization solution, especially in wide and tall indoor
environments like warehouses and multi-storied buildings.

I. INTRODUCTION

The recent emergence of a variety of low-bandwidth, low-
power, and long-range wireless wide-area networks (LP-
WANs) such as LoRa, SigFox, and NB-IoT is redefining
the IoT revolution. Among these competing technologies,
LoRa [2] has been the most popular of all LPWAN protocols
that exist today. LoRa is a low-cost sub-GHz radio technology
that has a transmission range of up to 9 miles in line-of-sight
(around 1.5 miles in non-line-of-sight), lasts up to 10 years
on a coin-cell battery, and supports up to 50 Kbps of com-
munication bandwidth. Applications of LoRa include smart
metering, environment monitoring, road traffic monitoring,
facility management, smart parking, street lighting, vehicle
tracking, waste management, and precision agriculture.

Although LoRa is an enormous success in many outdoor
applications, its prospect in indoor scenarios remains unex-
plored. In today’s indoor IoT ecosystem, we observe mainly
a handful of wireless technologies such as Bluetooth Low
Energy (BLE) and WiFi; and occasionally, ANT, Zigbee, and
other proprietary communication protocols.

We envision that in future smart buildings, LoRa will be
used in conjunction with other existing short-range wire-
less communication technologies to improve their energy-
efficiency. LoRa will help reduce energy waste in sizable
buildings in two main ways. First, it will be used as a long-
range communication protocol to efficiently control energy-
consuming building infrastructure (e.g., elevator, lighting, fire
safety), and second, it will be used to localize and track
humans and mobile nodes (e.g., service or surveillance robot)
to infer the occupancy level and space usage to be able to con-
trol HVAC systems. Due to their long-range and penetration

capability, these goals can be achieved with fewer transceivers
and at a much lower deployment & maintenance cost.

Of particular interest to us in this paper is the ability of a
pair of LoRa radios to estimate the range (i.e., the straight-
line physical distance) between them. If successful, this be-
comes significant, especially in indoor scenarios, as LoRa
potentially overcomes one of the major issues with existing
indoor localization systems – which is the limited coverage of
radio transceivers due to the presence of walls, ceilings, and
other moving and non-moving obstacles. A single node in a
LoRa-based indoor localization system can provide wireless
coverage to an eight-story building. It will significantly lower
the cost (per unit area) of installation and maintenance of an
indoor localization infrastructure.

The problem of indoor localization has been extensively
studied for wireless protocols such as BLE [6] and WiFi [8].
However, other than online articles on LoRa’s prospect on
outdoor geo-location services and a fingerprinting-based out-
door localization approach that uses a different LPWAN proto-
col [7], there has been no significant effort in considering LoRa
as an alternative to BLE or WiFi-based indoor localization
systems. According to LinkLabs the low direct path energy due
to low power and the multipath correlation resolution due to
lower bandwidth makes LoRa unsuitable for localization [1].
However, the penetrability of LoRa through the wall and the
presence of multiple penetrable walls in indoor scenarios has
not been taken into account. To fill this void, we perform an
extensive empirical study to analyze the feasibility of LoRa
for indoor localization. Specifically, we study the ranging
problem, where the goal is to estimate the straight-line distance
between a transmitter and a receiver , which is a key step in
many localization systems [9], [10].

To establish a framework for our study, we define seven
primary criteria that determine the suitability of wireless
technology in indoor localization. For comparison, we con-
sider BLE and WiFi that have been previously proposed in
many recent [6], [8] indoor localization systems. We conduct
thorough experiments in multiple line-of-sight and non-line-of-
sight indoor scenarios including corridors, open spaces, spaces
with a different number of walls, and across floors of multi-
storied buildings. All three technologies (LoRa, BLE, and
WiFi) are empirically studied in these environments in light
of the performance criteria.

Our experiments reveal that LoRa is more stable than
both WiFi and BLE, and it is also more resilient to indoor
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environmental artifacts and randomness such as the presence
of walls, ceiling, and moving and non-moving obstacles.LoRa
has a lower operating frequency than other protocols (e.g.
BLE, WiFi) which increases the penetrability of LoRa through
objects. Moreover, LoRa uses Chirp Spread Spectrum (CSS)
modulation which has lower multipath effect with less reflec-
tion, refraction, and scattering. The higher penetrability and
lower multipath effect introduce more stability making LoRa
a better choice for indoor localization. Previous work on real-
time LoRa [4] ensures the usability of LoRa for localization.
Overall, LoRa achieves a mean localization error of 0.76m–
1.19m and 0.71m–3.72m in line-of-sight and non-line-of-sight
scenarios, respectively, when a simple algorithm is used to map
unprocessed RSSI measurements to distances.

II. IMPLEMENTATION

We briefly describe the setups of LoRa, BLE, and WiFi and
the environments that we use in our empirical study.

A. System Setup

We develop a LoRa node by interfacing a LoRa radio shield
transceiver with an Arduino Uno. We modify an open source
software library to develop a program that transmits beacon
signals at a predefined interval. We use a Multitech Conduit
device as the LoRa gateway which is a configurable and
scalable Industrial LoRa gateway. Since Multitech gateway is
costly and we need more than one gateways in our experi-
ments, we develop custom LoRa gateways by interfacing a
LoRa radio shield with a Raspberry Pi 3 Model B. Unlike
the Multitech; these gateways are not capable of simultane-
ously listening to multiple channels. As BLE transmitters, we
use two types of peripheral devices – LightBlue Bean and
STM32F4 microcontroller with a nRF52 BLE module. As
BLE receivers, we use Ubertooth One and Nexus 5. In WiFi
experiments, we use a Linksys WRT310N router and a laptop.

B. Study Environments

We conduct experiments in four indoor scenarios which
include both line-of-sight and non-line-of-sight setups. We
choose a long corridor (23m) and a large open room
(25m×23m) in our campus buildings. We consider both single
floor (25.29m with four rooms of different sizes) and multiple
floor (four and eight-story buildings) non-line-of-sight scenar-
ios. All experiments are conducted during regular office hours,
and we experience heavy traffic. At each position, we record
the communication statistics of the transmitter periodically
sends a beacon message to the receiver for 2 minutes.

III. RESULTS

In order to analyze LoRa’s potential for indoor localization,
we evaluate its performance concerning seven metrics men-
tioned in Table I. Some of these metrics have previously been
introduced in [3]. We compare its performance with BLE and
WiFi.

A. Wireless Coverage

The coverage of wireless technology plays an essential role
in reducing the overhead of a localization system. Lower
coverage contributes to the burden of setting up additional
infrastructure such as a large number of access points. In this
experiment, we compare the coverage of LoRa, WiFi and BLE
in different scenarios mentioned in Section II. We define the
coverage as the area where there is less than 10% packet loss.
We choose this as our metric rather than using only signal
presence to make sure that there is a reliable communication
in the coverage area. Figure 1 shows the packet drop rate for
the three wireless technologies in different scenarios.
• Figure 1(a): We measure the packet drop at different
distances between the transmitter and the receiver in an open
room containing obstacles like furniture and people. When the
range is less than 18m, all three protocols manage to send all
the packets. However, for longer distance, BLE starts to drop
packets due to its lower transmission power than WiFi and
a poor penetration capability when compared to LoRa. We
also measure the packet drop with the longest indoor distance
available to us (75m and non-line-of-sight) and experiences no
packet drop for LoRa.
• Figure 1(b): We show the percentage of packets dropped for
LoRa, WiFi and BLE for a different number of walls between
the transmitter and the receiver. Since LoRa operates in the
sub-GHz band (lower frequency than WiFi and BLE), it has
more penetration capability. Thus, it shows better performance
and incurs no packet loss even when there are thirteen walls
between the transmitter and the receiver.
• Figure 1(c): We analyze packet drop in a multi-floor sce-
nario. The combination of lower transmission power and a
lower penetration capability makes BLE the worst choice.
Although WiFi has a higher transmission power than BLE, it
manages to send only 10% packets to the next floor. LoRa, on
the other hand, transmits all the packets successfully across
three stories. We repeat this experiment in an eight-story
building, and LoRa drops only 6% packets on average when
there are seven floors between the transmitter and the receiver.

B. Stability of Received Signal

In this section, we analyze the stability of LoRa, BLE and
WiFi’s received signal strengths. Stability of the received sig-
nal indicates higher adaptability to the change of environment
and generalized localization model. We use the variance of
RSSI at the receiver end as a metric for stability. The lower
the variance leads to a stable signal and better localization.
• Figure 2(a): First, we analyze the stability of RSSI in the
long corridor scenario. As LoRa operates in the sub-GHz
band, it has a higher penetration capability and less multipath
effect than BLE and WiFi. LoRa shows the least variance
in RSSI (maximum 3.57dBm) compared to BLE (maximum
154.96dBm) and WiFi (maximum 70.62). This is a significant
finding as it opens up the possibility of a simple RSSI-based
ranging solution for LoRa, which is not practical for BLE and
WiFi for their unstable signals at different locations.
• Figure 2(b): Next, we measure the variance of RSSI for the
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Fig. 1: Packet drop of LoRa, BLE, and WiFi at different distances and scenarios. LoRa outperforms both BLE and WiFi in
terms of packet drop in all line-of-sight and non-line-of-sight scenarios.
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Fig. 2: Comparison of variance in RSSI measurements at a given position in different test environments. LoRa is more stable
than BLE and WiFi in all the scenarios. On the other hand, WiFi exhibits more stability than BLE.
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Fig. 3: Path loss trend comparison of LoRa, BLE and WiFi in various scenarios. LoRa RSSI shows higher logarithmic relation
with distance than both BLE and WiFi. The radio link in (d) is LoRa only.

open room scenario. The variances of both LoRa (4.32 dBm)
and WiFi (76.65 dBm) increase, but the increase for LoRa is
less than one dBm. This result reconfirms that LoRa has better
stability when compared to the other two.
• Figure 2(c): We measure the stability of LoRa, WiFi and
BLE in the non-line-of-sight scenario for varying number of
walls between the transmitter and the receiver. LoRa has lower
variance than BLE and WiFi.
• In the multi-floor building, LoRa shows a maximum variance
of 8.55 dBm. We do not report the other two protocols as they
are not accessible from different floors.

C. Path Loss Trend

We measure the RSSI values at different distances and fit a
logarithmic curve (following the log-distance path-loss model)
to model the relationship between distance and RSSI. We use
the R2 score as a measure of goodness of fit. A better fit means
the technology is more suitable for estimating distances using

RSSI-based localization algorithms.
Figure 3(a)–3(d): We plot the trend in RSSI measurements
for each of the three technologies for each of the four test
scenarios. We make a few interesting observations in these
plots. First, LoRa maintains a regular trend in all four cases.
Second, BLE is hugely unreliable as its values fluctuate a
lot. Note that this experiment is performed in a non-isolated
area and human activities were not limited. This caused high
fluctuation in BLE RSSI. Third, the regularity in WiFi’s trend
is somewhere in between BLE and LoRa. Fourth, BLE does
not work after 15m. Fifth, both BLE and WiFi do not work
across floors. LoRa has the best goodness of fit (85%–96%)
in all cases, whereas BLE and WiFi achieve fitness values of
55%–79% and 86%–91%, respectively.

D. Localization Accuracy

We analyze the accuracy of ranging for LoRa, BLE, and
WiFi. (Figures 4(a)–4(d)): To obtain the range, we use least
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Fig. 4: Both LoRa and WiFi perform better in estimating distance than BLE. However, WiFi shows maximum error of 4.06m
whereas LoRa has maximum error of 3.72m. The radio link in (d) is LoRa only.

TABLE I: Comparison of LoRa, BLE, and WiFi for Indoor Localization

Performance Metric LoRa WiFi BLE Performance
Wireless Coverage ≤ 8 Floor & ≥75m (NLoS) <2 Floor & <29m (NLoS) 1 Floor & >10m (NLoS) LoRa > WiFi > BLE
Stability of Received Signal 0.88-7.52 dBm 1.36-20.38 dBm 18.75-170.84 dBm LoRa > WiFi > BLE
Path Loss Trend 0.85-0.96 0.79-0.86 0.91-0.55 LoRa > WiFi > BLE
Localization Accuracy 0.76m-3.72m 0.52m-4.06m 1.53m-26.46m WiFi > LoRa > BLE
Responsiveness & Data Rate 50 kbps 100-250 Mbps 1Mbps WiFi > BLE > LoRa
Power Consumption 20mA 120mA 24mA LoRa > BLE > WiFi
Cost $450 $800 $1040 LoRa > WiFi > BLE

-59dBm

-59dBm-33dBm

Transmitter
Receiver

x

x

Fig. 5: The effect of denser roof material and omnidirectional
antenna on different floors.

square error polynomial regression [5] to map distances to the
corresponding RSSI measurements. The estimated distances
are then compared against the ground-truth distances to obtain
the ranging error.

In the first three test environments, LoRa, BLE, and WiFi
show localization errors of 0.76%–1.72%, 4.6%–26.5%, and
0.52%–4.1%, respectively. In the fourth scenario, we show
LoRa’s ranging performance for different values of floor
differences (i.e., the number of floors between the transmitter
and the receiver). Even in this extreme case, where BLE and
WiFi do not work at all, LoRa’s ranging error is within the
range of 0.71m–3.72m.

Note that in single floor scenarios, a fixed RSSI value ideally
maps to points on a circular perimeter around a transmitter.
This model can be extended to a multi-floor case by consider-
ing a sphere instead of a circle. However, due to the presence
of the ceiling, which is usually made of different and stronger
material than the wall, and the omnidirectional antenna (donut
shaped radio transmission model) the model becomes a
deformed ellipsoid. Whenever the signal penetrates the ceiling,
there is a change in the spherical signal propagation model.
Figure 5 shows different RSSI for the same distance when
the obstacle changes from wall to ceiling. By considering this

phenomenon, the path loss model can be improved. This paper,
however, does not address this problem and we leave it as
future work.

After the ranges are calculated existing localization tech-
niques, e.g. trilateration can be applied. However, in this paper,
we focused on the ranging accuracy alone.

IV. CONCLUSION

This paper studies the feasibility of using LoRa for indoor
localization. We conduct experiments in multiple line-of-sight
and non-line-of-sight scenarios and quantify the performance
of LoRa as well as two other popular wireless protocols (BLE
and WiFi). We summarize our findings in Table I and conclude
that LoRa is the best choice for indoor localization for large
spaces and multi-storied buildings.
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