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Abstract—Internet of Medical Things (IoMT) enable early
detection and alerting of critical disease conditions through
continuous monitoring of electro-physiological body parame-
ters. However, large scale use, especially in rural and sparsely
connected regions, poses challenges in terms of unavailability
of sufficient data bandwidths and connectivity. Additionally,
the physicians, who are already managing huge patient load,
would be overwhelmed to take clinical decisions after viewing
voluminous data pouring in from multiple IoMT devices.

In our research, we developed a technique called Rapid
Active Summarization for effective PROgnosis (RASPRO) that
converts unwieldy multi-sensor time series data into summarized
patient/disease specific trends in steps of progressive precision as
demanded by the physician for patients personalized condition
at hand and help in identifying and subsequently predictively
alerting the onset of critical conditions. RASPRO generates
clinically useful, yet extremely succinct, summary of a patient’s
medical condition represented as a series of symbols called motifs,
which could be sent to remote physicians even over SMS or
emerging narrow bandwidth Internet of Things (IoT) networks.
We demonstrate that the diagnostic predictive power of RASPRO
motifs is comparable to raw sensor data.

Index Terms—Internet of Medical Things, Severity detection,
clinical data summarization

I. INTRODUCTION

Wearable IoMT devices is making remote monitoring of
patients widely accessible. However, large scale deployment of
these devices is still a far away reality. In most of the rural and
remote regions there is only intermittent connectivity to data
networks along with scarcity of bandwidth. Communicating
the vital parameters from IoMT devices to remotely located
physicians demands development of bandwidth miserly data
reduction techniques. There is a complementary challenge at
the physician’s end too. The physicians, who are already over-
loaded, would feel even more overwhelmed by the voluminous
data being flooded from remote patients’ sensors.

Researchers have actively looked at how to reduce the
data bandwidth consumption. Hooshmand et al. [1] evaluate
the suitability of compression techniques based on Fourier
transform, DCT, and wavelets, and propose online dictionaries
as a preferred technique for power-efficient transmission of
biosignals. Lee et al. [2] demonstrate an efficient compression
technique for ECG signals that could be used for real-time
applications. Some of the earlier works in symbolic repre-
sentation of data such as Symbolic Aggregate approXimation

(SAX) Lin et al. [3] convert data into simpler, dimensionally
reduced symbols. However, these existing data summariza-
tion, reduction, and data fusion [4] techniques do not lend
themselves to segregation based on severities set by medical
experts, potentially resulting in loss of clinical interpretability,
thereby missing clinically relevant insights as well as resulting
in clinical inconsistencies [5]. These techniques also involve
computationally complex encoding-decoding algorithms that
might put additional constraints on IoMT edge devices.

In our research, we have developed and evaluated a tech-
nique that we call as Rapid Active Summarization for ef-
fective PROgnosis (RASPRO). Our RASPRO technique con-
verts unwieldy multi-sensor time series data into summarized
patient/disease specific trends in steps of progressive preci-
sion as demanded by the physician for patients’ personalized
condition at hand and help in identifying and subsequently
predictively alerting the onset of critical conditions.

II. RAPID ACTIVE SUMMARIZATION FOR EFFECTIVE
PROGNOSIS

Let us consider the raw sensor data coming in from multiple
IoMT sensor devices. There are four major processing steps
(see Figure 1).

Step 1: From the sensor data, we derive N different vital
parameter series, V PS1, V PS2, ..., V PSN . For example, in
our system there are five ECG (QRS width, QTc, R-R interval,
S-T elevation/depression, P-R interval) and three PPG (BP,
SpO2, pulse rate) parameter series, totaling up to N = 8.

Step 2: Each sample value in each of the vital parameter
series is converted to disease-parameter specific discrete quan-
tized severity level symbol such as, ‘A’, ‘A+’, ‘A++’, ‘A−’,
‘A − −’, etc., where the clinically defined normal range for
a given parameter is assigned the symbol ‘A’, while values
which are above and below normal ranges are assigned with
increasing number of “+” and “−” suffixes according to the
severity. Unlike typical systems (such as the one described
by Wu et al. [6]) with fixed severity thresholds for a sensor,
in RASPRO the number of severity level symbols LSV R and
their mapping to corresponding parameter value ranges are
customized according to the patient’s disease.

The output of Step 2 are multiple series of quantized severity
level symbols corresponding to different parameters.
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Fig. 1. The RASPRO Engine for converting raw sensor data from IoMT
devices to severity summaries in the form of Disease Severity Matrices
(DSMs) and Personalized Health Motifs (PHMs).

Step 3: In this step, quantized severity symbol series of all
parameters relevant to the disease being monitored are grouped
into a two dimensional Disease Severity Matrix (DSM) by a
multiplexer. Each row R in the DSM represents one parameter,
and the number of columns C represents the total number of
samples in the monitoring interval.

There may be a succession of DSMs for successive moni-
toring intervals with a quiescent time gap of δ between them.

Step 4: In the final step of RASPRO, all the quantized
severity symbols in a parametric row of DSM are tempo-
rally summarized to one consensus symbol using a disease-
parameter specific formulation. In general, the consensus sym-
bol captures the dominant trend in the patient data.

Figure 1 depicts an example where there are three rows
in the DSM corresponding to three parameters, namely blood
pressure (BP), blood oxygen saturation (SpO2) and pulse rate.
Each of these parametric rows is summarized to consensus
symbols (which are defined here as the most frequently
occurring symbol) “A++”, “A”, and “A”, respectively.

Personalized Health Motifs: Consensus symbols corre-
sponding to all the rows in a DSM are put together in a column
vector to arrive at a Personalized Health Motif (PHM) as
depicted in Figure 1. Different kinds of summarization based
on the sensor type, diagnostic interest, and patients’ health
condition are possible. Depending up on these factors, the
physician might want to know the mean of values, frequency
of peaks, value of highest peak, most frequent abnormality,
sparsity of values etc. Accordingly, the RASPRO provides
a framework to define summarization differently for various
clinical requirements. A more exhaustive approach to defining
PHMs to capture disease specific trends is discussed in one of
our recent papers [7].

Motifs as input to Machine Learning Models: Machine
learning classifiers that are domain agnostic can result in
mis-classification unless trained on large and reliable enough
datasets. Such datasets need to adequately represent the com-
plete spectrum of variations observed for disease conditions.
Currently, the number of diseases for which such datasets are
publicly available is limited. Also, classifiers could be com-
paratively computationally complex to execute on an IoMT
edge-device, and hence are best suited to run on the cloud to
aid in automated diagnosis. However, since RASPRO motifs
represent the major trends seen in the patient, it could be used
as an alternative dataset to build machine learning models that
could potentially run on reduced datasets.

III. EVALUATION AND RESULTS

The RASPRO technique was clinically validated in two
steps: (a) Physionet MIMIC II dataset [8] based testing on
83 patients for detecting and advance warning of cardiac
conditions and (b) comparative analysis with another symbolic
data reduced representation technique [3].

The results, which are elaborated in our recently published
works [5], [9], demonstrate that RASPRO PHMs have very
good predictive power, as measured by standard metrics of
precision, recall, and F1-score (with values equal to 0.87,
0.83, and 0.85 respectively). Also, we show that RASPRO
outperforms domain agnostic techniques such as SAX; 20-
90% improvement in F1 score over bandwidths ranging from
0.2-0.75 bits/unit-time. These results are attributable to the
premise that PHMs effectively capture the major abnormal
trends for a first level clinical diagnosis, and suppress details
that can be deferred for a subsequent detailed investigation.

IV. CONCLUSION AND FUTURE WORK

RASPRO is a medically-aware clinical severity detection
and data summarization technique for IoMT devices. This
technique can be applied in the edge devices to make pervasive
computing more accessible in remote and sparsely connected
regions. Future direction of research includes opportunities
to model and validate RASPRO in other specialties, such as
neurology and endocrinology.
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