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Abstract—In this work, we propose a method to create and
synthesize a new set of virtual images of daily objects within
a smart environment partially automating the labeling process.
Proposed methods enable the generation of a large dataset
from a set of few images using an ad hoc data augmentation,
which increases the original dataset size, generating new items
through partial modification of available images. The proposed
method for data augmentation is accomplished through the
following steps: (i) object tracking is proposed to identify and
label static objects; and (ii) background subtraction is used to
select the masked foreground object of moving objects, which
are virtually projected with geometry transformation over room
images used as background. Furthermore, a case study is carried
out, where an inhabitant wears a wearable vision sensor in a daily
scene. Eight objects are learned using the proposed methodology.
Finally, obtained results and successful recognition rates are
discussed.

Index Terms—object recognition, data augmentation, smart
environments, wearable vision sensors, deep learning, activity
recognition.

I. INTRODUCTION

Activity Recognition (AR) defines models able to detect
human actions and their goals in smart environments in order
to provide assistance. Such methods have increasingly been
adopted in smart homes and health-care applications aiming
both at improving the quality of care services and providing
assistance for instance in emergency situations [1]. AR is an
open field of research where approaches based on different
types of sensors have been proposed. In the firs stages, binary
sensors were proposed as suitable devices for describing daily
human activities within a smart environment setting [2]. More
recently, wearable devices have been used to analyze activities
and gestures in AR [3].

Vision based sensors have also been used as a rich data
source for the recognition of human activities. Within indoor-
based works, the description of activities through the detection
of human joints with a vision sensor has been considered [4].
Within this context, the success of these approaches highlights

a potential major role that egocentric view could play in indoor
environments [5] [6]. Moreover, the use of wearable vision
sensors with first-person point-of-view has been reported as
viable in detecting daily object interaction [7].

On the other hand, deep learning approaches have emerged
as a powerful method to recognize objects from vision images
by means of Convolutional Neural Networks (CNNs) [8],
which have generated a new trend of vision models [9].
However, the weak point of deep learning methods resides
in the fact that the training in CNN requires a large amount
of image data [10].

To palliate this lack, data augmentation provides a straight-
forward solution to enlarge the number of learning cases from
a limited set [11] and therefore, reducing the risk of over-fitting
[8]. A similar approach has been proposed in recent works
[12], [13], where the selection of images from objects in a
small number of human-annotated examples is next projected
in the environmental background to provide new synthetic
examples. Similar data transformations and operations improve
the recognition of objects [14], which have also been related
to improve the learning with new synthetic images from a real
world in a similar way to a dream process. In the context of
AR, a large quantity of labeled data is required [15] and videos
have often been used to produce the annotation of data portions
and specific annotation tools have been developed [16], [17].
Similar tools can facilitate the annotation process alleviating
the problem, yet labeling remains a time consuming task. In
this paper we propose a straightforward method that allows
to easily recognize objects involved with ADLs with minimal
user interaction.

In addition, transfer learning has resulted a suitable method
to efficiently transfer patterns when recognizing objects from
a new scope [18]. Moreover using transfer learning from
previous pre-trained networks produces a boost in learning
which is suitable to problems with limited training data [18],
[19].
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Taking into account these references and the most recent
progress in this topic, in this work, we present a methodol-
ogy for straightforward recognition of daily objects in smart
environments from wearable vision sensors focused on the
following points:

• Recognition of object instances. We aim to identify
personal and daily objects, such as, my cupboard as
distinct from other cups or objects in the environments.

• Straightforward data generation and bounding-box la-
beling [20] has been developed and adapted to static
and moving objects in the environment. We propose:
i) an automatic object tracking [21] in case of static
objects, and ii), a virtual projections of objects for which
foreground have previously been extracted [22] in case
of moving objects.

• A neural network for object detection is integrated via
fine-tuning to increase the results and reduce the required
learning time.

• Description of human activities by egocentric first-person
point-of-view [6] using a wearable vision sensor [23].
Such sensors have been successfully described as a em-
ployed to identify interaction of objects in human activity
recognition [7].

In Figure 1, the components of the proposed methodology are
illustrated. This methodology aims to facilitate the integration
of vision recognition from wearable vision sensor in smart
environments through a short-time data collection facilitating
labeling of daily objects. The reason behind is evaluating the
capabilities of a quick collection of visual data to describe
daily scenes while an inhabitant interacts with objects in order
to promote the object recognition as information source in
other models of AR.

Fig. 1. Components of the methodology. First, a limited number of poses
from objects are collected. Second, several techniques of data augmentation
and tracking are applied to ease the creation and labeling of dataset. Third,
a Convolutional Neural Networks (CNN) learns the images and generated
labeling. Fourth, the evaluation of the model is developed by an inhabitant
which wears a wearable vision sensor while developing daily activities.

The remainder of the paper is structured as follows: in
Section II, the new methodology to easily annotate daily ob-

jects in smart environments is proposed; in Section III, a case
study of daily living activities in an intelligent environment is
presented. Finally, in Section IV, conclusions and future works
are pointed out.

II. METHODOLOGY

In this work, a methodology to easily recognize daily
objects in smart environments from wearable vision sensor
is proposed. Specifically, we focus on recognition of objects’
instances in an indoor context using a first-person point-of-
view.

The following section presents two different approaches
for data collection and bounding-box labeling; respectively
with reference to static and moving objects within a smart
environment .

A. Collecting and labelling data for static objects

Some objects can be assumed to be static and fixed in
a location which does not change over time. Static objects’
appearance may only change because of camera pose and
lighting variation, also induced by changes of the observer
position. This assumption provides a major advantage for
labeling purposes. Hence, for static objects we propose the col-
lection of short videos of the object within fixed background
from different perspective and distances.

Subsequently, an auto tracking is applied to the instance
of the static objects in order to auto detect the bounding box
where the object is located in the video. To this end an object
tracking approach [25] has been used, where just an initial
bounding box selection is required by the user in order to
track the object in the complete video sequence. After visual
inspection of the results, we concluded that the approach of
[25] provided better results than Tracking-Learning-Detection
[26] or median flow tracker [27].

This data collection approach provides easy data recording
without requiring long time collection, as well as, an automatic
labeling of the bounding box using an automatic visual tracker.
We note that learning in this static context is not robust to
changes in the background or location of the instance object.

Figure 2, depicts the process of collecting and labelling data
for static objects.

B. Collecting and labelling data for moving objects

Other objects are usually handled by the inhabitant, thus
their location changes in the smart environment. Moreover,
the point-of-view of the person while looking at and inter-
acting with them is not fixed and their location in the smart
environment changes.

In this case, the proposed method aims to generate thousand
of images from just few raw images of the target object. This
approach inherently presents further complexity with respect
to the case of static instances, due to the variability introduced
by a dynamic context.

First, few images of the object are taken from different
points of view, rotations and orientations. Then, a foreground
extraction using iterated graph cuts is applied [22] to obtain the
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Fig. 2. A) Collection of short-videos from static objects. The KFC tracking
provides auto-labeling of the bounding box in the images. B) Example of the
image of clock with the bounding box auto-labeling from KFC tracker.

pixels of the objects without the background, which configure
a mask for each frame with a transparent background (masked
foreground objects). This process is straightforward from the
user perspective who is simply required to select the bounding
box where the object is located. Finally, for each pose an image
of the object is obtained depicting only the target object with
no background. In Figure 3, example of this process is shown.

Subsequently, a short-time video for each room of the
smart environment is collected from a vision sensor, whose
frames are used as background. Finally, the masked foreground
objects (obtained in the previous step) is superposed over the
new background obtained from the video of the room) thus
generating a new synthetic set of virtual images. This anno-
tation strategy for moving objects provides also the bounding
box labeling which determines both the location and size of
the object; this is beneficial in training detectors that work in
this specific environments.

In order to locate masked foreground objects in the back-
ground of the rooms, a significant data augmentation from
original images is developed by means of random transforma-
tions: translation, rotation and scale, which have been success-
fully proposed in visual recognition within smart environments
from limited set [28].

• Translation. The masked foreground objects and bound-
ing box labels are relocated within a maximal window
size [tx, ty]

+ using a random process which gener-
ates a random translation transformation [tx, ty], tx ∈
[0, t+x ], ty ∈ [0, t+y ].

• Rotation. The rotations of the masked foreground objects
and bounding box labels are provided in two steps. First,
the translated image is flipped horizontally and vertically,

using a random process that applies the transformation to
a percentage of cases, defined by wH , wR respectively.
Second, a rotation transformation is defined by a maximal
rotation angle α+ which generates a random rotation with
an angle α ∈ [0, α+].

• Scale. A random scale within a maximal angle s ∈ [0, s+]
is applied to the mask and bounding box labeling.

• Flipping. The image is flipped horizontally and vertically,
using a random process that applies the transformation
in a given percentage of cases, defined by wH , wR
respectively,

The final result is a new synthetic set of images, where
the moving objects are virtually located, scaled and rotated in
the background. An example is shown in detail in Figure 3.
Although these images look like surrealistic, we note they are
really close to the point-of-view of the person when interacting
with the objects and these images are used in the learning
process.

III. CASE STUDY

The case study was carried out in the smart lab of the
CEATIC (Center for Advanced Studies in Information Tech-
nology and Communication) of University of Jaen (Spain)
[24] 1. This smart lab integrates a living space with bedroom,
kitchen, living-room and toilet. Eight objects within this smart
lab were selected to be recognized: 1) the microwave of the
kitchen, 2) the bedroom clock, 3) exit door, 4) the toothbrush,
5) the preferred book, 6) tetra brick of milk, 7) the cup, and
8) the mobile device of the inhabitant.

The selection criterion was integrating moving and static
objects which were relevant in most popular target ADLs in
AR approaches, such as waking up, taking some breakfast
and resting in the smart environment. For each static object
(room clock, microwave and exit door), 3 short videos (with
a duration between 10 and 15 seconds) were collected. For
each moving object (toothbrush, cup, book, mobile and tetra),
20 images from different orientations were collected. For each
room involved (kitchen, living room and toilet), 3 short videos
(with a duration between 10 and 15 seconds) were collected. A
wearable vision sensor (GoPro Hero 5) was used to collect the
images and videos. In Table I, an image of static and moving
objects and the room involved in the case study are illustrated.

Second, for each static object, we applied the adaptive color
attributes approach for auto tracking [25] to auto label the
bounding box where the object is located in the video, as we
described in Section II-A.

Third, for each moving object, we applied a foreground ex-
traction to obtain the masked foreground object using iterated
graph cuts [22]. Then, we augmented the data projecting the
masked foreground objects in the background of the rooms.
200 images for each masked foreground object were generated
with next parameter of random transformations: translation)
maximal window size [tx, ty]

+ = [50, 50], rotation) maximal

1https://ceatic.ujaen.es/en/smartlabweb
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Fig. 3. On the Top) Steps in the collection and data labelling process for
moving objects: i) taking of few images of the object, ii) extracting back-
ground to generate a masked foreground object, iii) collection of background,
and iv) random transformation of the masked foreground object and bounding
box of the labeling when projecting over the background. On the bottom) An
example of a cup in the smart environment. A) cup with original background,
B) masked foreground object as result from foreground extraction, and C)
virtual random transformation of the masked foreground object and projection
over a background.

rotation angle α+ = π/4, scale) maximal scale s+ = 0.5 and
flipping) in the percentage of cases wH = wR = 0.5.

Fourth, we have learned the data to detect the objects from
an efficient and robust Convolutional Neural Network [29]: a
CNN model with inception configuration within layers [30]
with a faster learning approach [31]. We have used the Object
Detection API of Tensorflow [32] and the CNN of Faster
with an Inception backbone pre-trained on MSCOCO. While
learning with Tensorflow, the next data augmentation with
default parameters were also included: random change of pixel
values, contrast and saturation, and random displacement of

TABLE I
OBJECTS AND ROOMS INVOLVED IN THE CASE STUDY. FROM TOP TO

BOTTOM AND FROM LEFT TO RIGHT: MICROWAVE, CLOCK, DOOR,
TOOTHBRUSH, BOOK, TETRA, CUP, MOBILE DEVICE, KITCHEN, LIVING

ROOM AND TOILET.

boxes. The 9 objects where learned for 24 hours in i5 CPU
2.3 GHz without GPU.

Fifth, for the evaluation process, a scene where an inhabitant
wears a wearable vision sensor (Go Pro 5) were recorded.
In this scene, the inhabitant wakes up from bed and go to
toilet to toothbrushing. Then goes to the kitchen to pick up
a cup, which is filled by tetra brick of milk. Afterwards,
the cup of milk is heated in the microwave, and then, the
inhabitant drinks it and goes to sit in the sofa to read a book
and review the mobile devices. Finally, inhabitant goes to the
main door to exit. In the evaluation process, two similar scenes
were collected two times: scene 0 with a duration of 160
seconds, and scene 1 with a duration of 183 seconds. The
original images of objects, the augmented data with the auto-
labeling generated by the methodology and the images from
the wearable vision sensor are available in the next URL2.

A. Results

In this section, the results of detecting the daily object
from images collected by a wearable vision sensor using an
egocentric point-of-view are presented.

In Figure 4, the score of the recognition for each object
in the time-line for the two scenes is presented. First, we
identify that the range of detection in the scores exhibits
significant variations between objects. Consequently, some
objects present a great difference of scores between them:
some with low score and few number of recognition, against
others exhibiting high scores and frequent recognition. This is
mainly due to the similarity of an object with the environment
and or with other objects. For example, microwave and book
contain black and white regions which are very common in the
environment, so only from scores higher to 0.8 we recognize
properly the object. To identify the correct recognitions from
the scores, a threshold for each object has been applied. As

2http://serezade.ujaen.es:8054/smart-lab-wearable-vision/
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two similar samples of the scene were collected, scene 0 was
used to identify the thresholds, which are shown in Table II,
which minimize the false positives rates of objects. Scene 1
was used to evaluate object recognition with these thresholds
and the ground truth labeled by a human observer.

Fig. 4. Top) Raw scores of the object recognition in the time-line of the
scene 0 (top) and scene 1 (bottom).

Fig. 5. Recognition of static objects (top) and moving objects (bottom) after
applying threshold.

TABLE II
THRESHOLD OF SCORES FOR EACH OBJECT

Microwave(0.7) Clock(0.9) Door (0.8)
Toothbrush(0.6) Book(0.4) Tetra brick(0.9)
Cup(0.15) Mobile (0.95)

In Figure 5, we illustrate the object recognition in the
time-line of the scene 1 for each moving and static objects.
From this data of object recognition, we have evaluated the
capabilities of the recognition on a real scene. First, we
present precision and recall of the object detection for each
frame and detection. Precision represents the percentage of
corrected detection in the frames where the object appears.
Recall represents the percentage of real appearance of the
object in the frames where the object is identified.

TABLE III
PRECISION AND RECALL OF THE DETECTION FOR EACH OBJECT.

Object Precision Recall
book 1.0 0.11
clock 1.0 0.89
cup 0.86 0.42
door 1.0 0.5
microwave 0.89 0.25
mobile 0.97 0.48
tetra brick 1.0 0.28
toothbrush 1.0 0.37

As shown in the table III, precision is high but recall
is notably lower. We note extremely high metrics are not
usually presented in object detection from first-person point-
of-view. This is caused by the blurry images collected by a
wearable vision sensor while movements and the occlusion
of objects in real interaction of daily activities. However, it
does not represent a disadvantage in detecting and identifying
the user interaction with objects. Indeed, once an object is
detected, it can be straightforwardly linked with an interaction
of the inhabitant and the object. To evaluate it in Table IV,
the number of objects detected in each action: waking up,
breakfast and resting is shown.

TABLE IV
INVOLVED AND RECOGNIZED OBJECTS FOR EACH SCENE. FOR EACH

SCENE, FIRST COLUMN + REPRESENTS IF THE OBJECTS WAS INVOLVED,
SECOND COLUMN |N | REPRESENTS THE NUMBER OF DETECTION FOR

EACH OBJECT.

waking up breakfast resting
Obj + |N | + |N | + |N |
book 0 0 + 13
clock + 8 0 0
cup 0 + 37 0
door 0 0 + 5
microwave 0 + 17 0
mobile 0 0 + 33
tetra brick 0 + 11 0
toothbrush + 11 0

IV. CONCLUSIONS AND ON GOING WORKS

In this work, a methodology to easily recognize daily
objects in smart environments from a wearable vision sensor
using a first-person point-of-view has been proposed. The
proposed methodology is focused on minimizing the time of
data collection and labeling using virtual images from moving
objects and automatic tracking from static objects. Main func-
tionalities and advantages introduced with our method have
been described in a case study, where eight objects have been
identified in a smart lab, while an inhabitant developed the
most popular human daily activities in a home. The augmented
data with and auto-labeling of bounding boxes generated by
the methodology for the CNN have provided an encouraging
detection of the objects while the actions of the inhabitants
in the scene. However, the recall is notably lower due to
the complexity of recognizing from frames collected by a
wearable vision sensor, which include blur and fuzzy frames
due to movement. It enable a suitable daily object recognition
within a sequence of frames, but it is not appropriate for single

ARDUOUS'19 - 3rd International Workshop on Annotation of useR Data for UbiquitOUs Systems

50



image detection. In future works, instance based tracking can
be integrated to improve recall to avoid losing object detection
because of blur or other rapid changes in imagery [33], [34].

Finally, we note that visual recognition of daily objects
provides a straightforward representation of inhabitant’s inter-
action with objects, which can be integrated in multi-sensor
activity recognition system in future works.
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