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Abstract—Physiological responses to emotions play a vital role
in the field of emotion recognition. Machine-learning models
implemented in wristbands or wearables, already exploit unique
patterns in physiological responses to provide information about
humans emotional states. However, such responses are commonly
interfered and overlapped by physical activities, posing a chal-
lenge for emotion recognition “in-the-wild”. In this paper, we
address this challenge by investigating new features based on the
linear regression line and machine-learning models for emotion
recognition. We triggered emotions through audio samples and
recorded physiological responses from 18 participants before and
while performing physical activities. We trained models with the
least strenuous physical activity (sitting) and tested with the
remaining, more strenuous ones. For three different emotion
categories, we achieved classification accuracies up to 67%.
Considering individual activities and participants, we achieve up
to 73% classification accuracy, indicating the viability of emotion
recognition models and features non-sensitive to interferences
caused by physical activities.

I. INTRODUCTION

Sensing and recognizing emotional states of individuals are
one of the main challenges in the field of Human-Computer
Interaction. Research in this field is fueled by the idea to
enhance computer systems to a state where they can sense,
adapt, or even react to the emotional states of their users.
For example, advanced driver assistant systems might sense
emotional states of drivers to detect risky driving behav-
iors [1]. Work-related environments may include emotion
recognition to support software developers in their productivity
and mitigate effects caused by interruptions [2]. Physical and
physiological responses to emotions have been investigated
to facilitate various applications of emotion recognition [3].
Among others, microphones and cameras have been used to
extract speech, facial expressions, or postures for physically-
based emotion recognition [4]. Physical responses, however,
are subject to suppression and dissimulation as individuals
can control facial expressions or the tone of their speech,
therefore, confounding emotion recognition systems [5], [6].
Physiological responses to emotions, however, are difficult to
control and are affected by physical movement and activity [4].

Approaches that cope with physically-based interferences,
for example, provide models designated and trimmed for
individual activities [7], or select appropriate machine-learning
models for similar interferences [8]. Although these models are
quite practical, they are affected by the kind of interference,

or the computation complexity is increased as multiple models
are required. Therefore, we aim to address the challenge of
recognizing emotions throughout and non-sensitive to physical
activities. To investigate physically-based interferences, we
carried out an experiment with 18 participants where emotions
were elicited while performing physical activities. To force
non-sensitivity, we first filtered the recorded physiological
signals and then trained three different machine-learning algo-
rithms with the data of the least strenuous activity. The data of
other strenuous activities were then used to evaluate and to as-
sess the performances of machine-learning models. We found
that the data of features based on the linear regression line of
physiological signals facilitate machine-learning models that
reasonably distinguish between three different categories of
emotions. The contributions of our paper are three-fold:

• A presentation of results obtained from an experiment
with 18 participants and the publication of the resulting
data set1.

• An investigation of the influence of five physical activities
on physiologically-based emotion recognition.

• New features to recognize emotions interfered by physical
activities.

The rest of the paper is organized as follows: In Section II, we
present the state of the art of emotion recognition, focusing on
systems that utilize physiological responses to emotions and
to stress. In Section III, we derive research questions based
on the related work, setting the aim of this paper. In Sec-
tion IV, we outline the underlying emotion model as well as
emotion categories and describe the setup of our experiment.
In Section V and VI, we detail our approach, elaborating on
pre-processing and features that facilitate emotion recognition
during physical activities. Finally, we discuss the results of
this research.

II. RELATED WORK

The number of wearables already embedding physiological
sensors is continuously rising [9]. On the one hand, the perva-
siveness of such devices increases the amount of physiological
data, covering various facets of our everyday life. Also the
fact that physiological signals cannot be easily suppressed and

1https://www.comtec.eecs.uni-kassel.de/emotiondata/
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controlled by individuals, compared to emotion recognition
via gestures or facial expressions [6], increase the research
interest in those wearables. On the other hand, physiological
sensors introduce new challenges to the field of emotion
recognition. For example, challenges include environmental
influences such as ambient temperature changes, physical
activities, or the consumption of caffeine, sugar, and other
non-emotional factors [10].

Previous research has already investigated influences of
physiological sensors in the field of emotion recognition [10]–
[12]. For example, Picard et al. found that physiological
signals of one person vary from day-to-day [10]. Further-
more, they found that this day dependence could be handled
by applying Sequential Floating Forward Search followed
by Fisher Projection. This method led to an accuracy of
81% for classifying eight emotions of one participant over
20 different days. Xu et al. investigated the after-effects of
physical activities on emotion recognition with physiological
signals [11]. Classification accuracies of approximately 20%
were achieved with models trained on unaffected data sets
when testing on data containing after-effects. To improve the
overall classification accuracy, Heinisch et al. merged the
aforementioned data sets and applied a selection of commonly
used features for emotion recognition [12]. They achieved
classification accuracies of up to 96%. The influence of
physical activities on physiological signals has also been
investigated in the field of stress detection [7], [8], [13].
In [13], Alamudun et al. studied the subject dependence and
the influence of activities on stress recognition. By leaving
one activity for each participant out, they reached a mean
classification accuracy of 66% over 14 participants and four
activities. Hong et al. found an accuracy decrease of 14%
training with physically non-interfered stress data and testing
with data influenced by strenuous activities [7]. To investigate
physical responses to stressors in multiple stimuli scenarios,
Hong et al. proposed the use of a two-stage classification for
stress recognition. Based on the classified activity (first-stage),
a corresponding stress recognition model was applied (second-
stage). They achieved a mean classification accuracy of around
82% over 19 participants. Ramos et al. improved the two-
stage classification proposed in [7] to handle the influence of
physical activities on stress detection [8]. They modified the
first-stage by introducing a clustering algorithm. They further
trained activity independent models with the clustered data.
With this approach, they achieved an accuracy of 65%, which
was lower than the two-stage method of [7].

Motivated by these approaches, this paper address the influ-
ences of physical activities on physiologically-based emotion
recognition. As there is a vast amount of physical activities
we might perform during the day, emotion recognition models
independent to activities still remain an issue. The influence of
physical activities on stress detection has been already success-
ful addressed by [7], [8]. However, there is still a dependency
on physical activities, caused by the creation of separate stress
detection models in the second stage. This might increase the
overall effort and complexity of classification models. The

same effect is involved in training an emotion classification
model with emotion data influenced by a range of different
physical activities. In the light of the results of Picard et al.
[10], there are still open questions about the significance and
generality of different features on emotion recognition.

III. GOALS & HYPOTHESES

A human being’s physiological signals are influenced
through many factors such as the environment or physical
activities [10]. For robust and efficient emotion recognition,
models have to cope with interferences caused, for example,
by physical activities. We refer to the term non-sensitivity
when pointing towards the ability to cope with interferences
of physical activities. Motivated by existing approaches and
studies that already focus on physiologically-based emotion
recognition, we stress the following research questions:

• Can emotion recognition models be trained to be non-
sensitive to physiological interferences (RQ1).

• Are non-sensitive emotion recognition models robust or
are they subject-dependent and susceptible to segmenta-
tion parameters (RQ2).

In the next section, we present the underlying emotion
model and detail the setup and scenarios of our experiment.

IV. EMOTION MODEL & EXPERIMENTAL SETUP

In our experiment, we used the emotion model by Mehra-
bian and Russel to categorize emotions [14]. This three-
dimensional model classifies emotions in the dimensions of
pleasure, arousal, and dominance. Furthermore, we used the
International Affective Digital Sounds System (IADS) [15] to
elicit emotions while performing physical activities. Among
others, this system contains sounds that relate to the following
emotion categories, see Table I.

TABLE I
SELECTED EMOTION CATEGORIES AND THEIR SELF-ASSESSMENT

MANIKIN SCALE RATING

High Positive Pleasure High Arousal (HPHA)
pleasure: 6.06− 7.9 arousal: 6− 7.54
High Negative Pleasure High Arousal (HNHA)
pleasure: 1.57− 2.92 arousal: 6.07− 8.16
Neutral (NEUTRAL)
pleasure: 4.18− 5.64 arousal: 4.6− 5.48

The numbers that are given for each category refer to
the rating of sound samples in Self-Assessment Manikin-
Scale [16]. Physiological measurements were recorded using
the biosignalsplux toolkit [17] and an E4-wristband [18]. Fur-
thermore, we employed smartphone embedded acceleration,
gyroscope, gravity, and orientation sensors to record data about
a participant’s physical activities: sitting, standing, walking,
ascending and descending stairs. We placed the smartphone
inside a participant’s pocket. We used the same locations for
the physiological sensors of the biosignalsplux toolkit as in
our previous study [12]. The E4-wristband was located on the
non-dominant hand and was used to gather a participant’s Skin
Temperature (ST), the movement with a three-axis acceleration
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sensor, the Electrodermal Activity (EDA), and the Blood
Volume Pulse (BVP). We recorded data from 21 healthy
participants - 11 females and 10 males, between 19 and 50
years of age. The data of three participants were omitted due
to erroneous and missing physiological signals, resulting in
≈ 300 minutes of physiological data in total.

A. Scenarios
To reduce potential bias, we divided the participants into

two groups. Participants from both groups started with the
Scenario Activity (S-A) continuing either with the Scenario
Emotion (S-E) or the Scenario Emotion with Activity (S-EA)
before completing the study with the remaining scenario, re-
spectively. Each participant was measured individually. Fig. 1
details the procedure of the considered scenarios.

SE SEA

SA

SEA SE

Group 1

Group 2

Start

Fig. 1. Scenario procedures for different groups of participants: Scenario
Activity (S-A), Scenario Emotion (S-E), Scenario Emotion with Activity (S-
EA)

Scenario Activity (S-A): The participant was asked to per-
form physical activities without any elicitation of emotions.
The scenario started with three minutes of resting. After
that, the participant performed physical activities, i.e., sitting,
standing, walking, ascending and descending stairs, each for
a period of approximately 20 seconds.

Scenario Emotion (S-E): In this scenario, the participant
sat in a quiet environment, listening to the sounds of each
emotion category via headphones to prevent environmental
interferences. For each considered emotion category, we chose
sound samples for a total period of 2 minutes. We started with
NEUTRAL sound samples. Then, we played the sounds of
the HPHA category. To neutralize the influence of the HPHA
sounds, we played NEUTRAL sound samples again, before
playing HNHA sounds. Finally, NEUTRAL sound samples
were played again.

Scenario Emotion with Activity (S-EA): Finally, we com-
bined both scenarios where emotions were elicited while a
participant was performing physical activities. Each participant
was asked to perform physical activities in the same order and
time as in scenario S-A without resting but while listening
to the sounds of one emotion category for each trail. The
emotions were the same as in scenario S-E: first NEUTRAL,
followed by HPHA and finally HNHA. After each trial of the
full set of physical activities, the participant was sitting on a
chair and listening to the sound samples related to NEUTRAL
again to neutralize the participants’ emotional state.

V. METHODOLOGY

In this section, we present the steps towards emotion
recognition models, non-sensitive to physical activities. We

elaborate on preprocessing and filtering techniques as well as
describe the features used in our evaluation.

A. Data Pre-processing

Different kinds of noise (e.g., caused by moving cables
or gaps between the skin and the electrodes) were observed
in the biosignalsplux sensor data. To reduce the noise, we
applied several filtering techniques for each physiological
sensor, shown in Table II. The Electromyogram signal (EMG)
was filtered in two different ways. First, we filtered the signal
with a fifth-order high-pass Butterworth filter with a cut-off
frequency of 40Hz - EMG (H). Second, we used a fourth-
order low-pass Butterworth filter with a cut-off frequency of
5Hz on the raw signal - EMG (L). Furthermore, a fourth-
order low-pass Butterworth filter with a cut-off frequency of
0.5Hz and 0.25Hz was used to filter the EDA and ST signals,
respectively. Before we filtered the Piezoelectric Respiration
signal (PZT), a roll median function was used. Then, we
filtered the PZT signal with a first-order low-pass Butterworth
filter and a cut-off frequency of 1Hz. Finally, the PZT signal
was normalized. We decided not to filter the E4-wristband
signal, as no significant noise was observed.

TABLE II
FILTERING TECHNIQUES APPLIED ON BIOSIGNALSPLUX DATA

Sensor Filtering Units
EMG (H) High-pass filter (40Hz, 5th order) Micro Volt
EMG (L) Low-pass filter (5Hz, 4th order) Micro Volt
EDA Low-pass filter (0.5Hz, 4th order) Micro Siemens
ST Low-pass filter (0.25Hz, 4th order) Celsius

PZT
Rollmedian (7 values, extend),
Low-pass filter (1Hz, 1st order),
Normalization

Percentage

B. Window Size

To assess the robustness of emotion recognition models,
non-sensitive to physical activities, we also wanted to investi-
gate the influence of the segmentation parameters, especially
of the window size. For our analysis, we used the sliding
window algorithm to segment our sensor data and analyzed
the influence of different window lengths. We increased the
window lengths from 100ms to 600ms in 50ms steps and
evaluated the data.

C. Features

For our evaluation, we used 15 statistical features on each
physiological signal (e.g., mean, standard deviation or the
mean of the absolute value of the first difference) [19]. As we
have seen in our last paper, the slope of the linear regression
line was able to distinguish between different emotion cate-
gories for ST [12]. Therefore, we further investigated features
based on the linear regression line in this paper.

For calculating the linear regression line, we used SciPy,
an open-source mathematics library for Python [20]. The
linregress function takes two datapoints and calculates a
linear least-squares regression. For our evaluation, we further
processed the slope of the regression line, as well as its
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intercept. Let W = (x1, x2, ...xn) be a window with length of
n and I = (1, 2, ...n) the corresponding index of the elements
in W . The features are then defined as

fslope =
√
|slope(linregress(I,W ))| (1)

f1intercept =
√
|intercept(linregress(I,W )| (2)

f2intercept =
√
|intercept(linregress(I,W )|

3 (3)

After a preliminary analysis of the signals, we found, that
some features and sensors were more relevant for the classifi-
cation than others. Therefore, we evaluated the performance of
the models with a second set of features, namely: the mean of
the absolute values of the first differences, the absolute value
of the slope of the linear regression line, the square root of the
absolute value of the intercept of the linear regression line, and
the third power of the square root of the absolute value of the
intercept of the linear regression line. These selected features
were calculated on the BVP of the E4-wristband, the ST of
the E4-wristband, the EMG (H) and the EMG (L) signals of
the biosignalsplux toolkit. In our analysis, we found that the
ST, the EMG, and the BVP were useful for classifying the
three emotion categories.

VI. EVALUATION

This section describes and compares the results of the evalu-
ation. To investigate the first research question, we trained our
models with the physiological signals influenced by the least
strenuous activity (data set S-E) and tested with data influenced
by more strenuous activities (S-EA). Then, we separated the
data by activities from the data set of scenario S-EA and used
the data of each activity in the testing phase to evaluate our
classifiers empirically. Finally, we investigated the impacts of
different window lengths on the classification performance.
For the classification, we chose the three best classifiers from
our previous research, namely Decision Tree (DT), Random
Forest (RF) and K-Nearest Neighbor (KNN, with k=3) [12].
For each participant, the classification was done 10 times for
all classifiers to reduce the bias.

Fig. 2 depicts the mean classification accuracy of all par-
ticipants and for all activities of S-EA. The KNN classifier
achieved the best accuracy over all window sizes. Rather than
using all features, where the mean classification accuracy is
ranging from 35% - 50% for all classifiers, the set containing
only a selection of features yielded a higher classification
accuracy ranging from 56% - 67%. Also, the DT, as well as
the RF classifier, achieved similar results.

In addition to the classification performance, we were
interested in the performance considering single emotion cat-
egories. Fig. 3 shows the mean f-measure of all participants
and window sizes for the selected feature set. We observe
that all emotion categories were fairly recognized by the
classifiers, with mean f-measures ranging from 0.49 - 0.79.
In particular, we note that the classifiers achieved higher
performances recognizing the NEUTRAL and HNHA emotion
categories. Further analysis showed that high arousal cate-
gories of emotions were more difficult to distinguish. In case of
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Fig. 2. Mean classification accuracy of all participants with different feature
sets as training data
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Fig. 3. Mean f-measure over all participants and window sizes using the data
of the selected feature set as training data

miss-classification, we observed that the HPHA category was
incorrectly classified as NEUTRAL. However, this occurred
less often than the miss-classification with HNHA. Also,
NEUTRAL was rarely miss-classified as HPHA or HNHA.
Consequently, the f-measures of HPHA, tend to be lower than
NEUTRAL and HNHA.

Considering the second research question, we investigated
the impact of different window sizes on the classification
performance. Fig. 4 depicts the mean classification accuracy
and standard deviation over all windows for each participant.
We observe that the standard deviations are different for each
classifier and participant. The KNN shows the lowest standard
deviation for all participants, followed by the RF. Also, we
note that the all classifiers performed better on the data of the
selected feature set than on the data of all features.

We also extracted the data of all single activities from the
data set of scenario S-EA to investigate the accuracy of our
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(a) K-Nearest Neighbors (KNN)
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(b) Random Forest (RF)
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Fig. 4. Mean classification accuracy and standard deviation over all windows for each participant
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Fig. 5. Mean classification accuracy over all participants for single activities
using K-Nearest Neighbors (KNN)

classification models for each activity in the testing phase indi-
vidually. Note that the classification models were only trained
with data from scenario S-E influenced by a low strenuous
activity. Fig. 5 shows the mean classification accuracy of all
participants and for single activities using the KNN classifier.
Analog to the aforementioned results, we note that the models
trained with the data of the selected features achieved higher
classification accuracies than the models trained with the data
of all features. Using the selected feature set as training data,
emotions were recognized for all activities with a classification
accuracy ranging from 55% to 67%. For the RF and DT we
found similar results ranging from 54% to 71%, and from 51%
to 65%, respectively.

VII. DISCUSSION

Considering the research questions, we were first interested
whether machine-learning models could be trained indepen-
dently to physiological interferences caused by physical ac-
tivities (RQ1). To answer this question, we chose to train
emotion models on physiological data influenced by the least
strenuous activity (S-E) and tested the performance against
the remaining, more strenuous activities (S-EA). Overall, our
results indicate that the three emotion categories, NEUTRAL,
HPHA, and HNHA, can be recognized, ranging from 56% −
67% classification accuracy for selected feature sets over all
window sizes and per participant. The NEUTRAL category

achieved the highest f-measure followed by HNHA using the
RF and DT classifier. An exception was the KNN classifier
which achieved higher classification accuracies on the HNHA
category than the NEUTRAL category. However, we noticed
that the high arousal emotions, i.e., HPHA, HNHA were
confused with another for all participants. The reason for this
might be that the features corresponding to emotion categories
of being high arousal are similar in their physiological signal
responses. NEUTRAL is more often confused with HPHA than
with HNHA. A conceivable cause might be the consequences
of selecting the sound samples for the HPHA and NEUTRAL
categories, which are closer together on the pleasure scale
than to HNHA. This decision was made to have two minutes
of sounds available for each emotion category. Regarding the
robustness of non-sensitive emotion recognition models (RQ2),
we noticed that the size of the sliding window did not
have a significant effect on the classification accuracy, in all
considered cases. Considering the selected feature, standard
deviations of the classification accuracy range over all partici-
pants from 1.64%−5.1% for the KNN and 2.52%−5.89% for
RF, and 3.43%−8.59% for DT classifier. Nonetheless, we note
some outliers where the window size has a great impact on the
classification accuracy, expressed as a high standard deviation.
For example, a significant impact of different window sizes on
the classification accuracy was observed for the DT using as
training set the data of all features with a standard deviation of
23.62% for participant 16. We assume that for these outliers
some window lengths contain more information useful to
the classifiers to distinguish between emotion categories. The
reason for this might be that emotions and the influence
of physical activities on physiological signals are subject
dependent due to personal characteristics or the individuality
in the execution of physical activities.

VIII. CONCLUSION

In this paper, we investigated emotion recognition models
non-sensitive to interferences of physical activities. In partic-
ular, we considered the influence of five physical activities
namely sitting, standing, ascending and descending stairs on
physiologically-based emotion recognition. To evaluate non-
sensitive models, we trained three different classification al-
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gorithms with the data of the least strenuous physical activity
(sitting) and tested with the data of the remaining, more
strenuous activities. Using the data of selected features, partly
based on the linear regression line, we achieved mean classifi-
cation accuracies between 55% and 67% for classifying three
different emotion categories. Classification accuracies between
48% and 73% were achieved when considering individual
activities and participants. We found that the data of features
based on the linear regression line improved the performance
of emotion recognition models. The relative enhancement was
approximately +20% over using the data of all features. For
this new set of features, we found no significant influence of
different window lengths on the classification performance in
all considered cases.

Our results show that the complexity of emotion classifi-
cation models can be minimized by applying the proposed
features and classification algorithms. Contrary to already
existing approaches, our approach only requires one model
to distinguish three emotion categories interfered by physical
activities. However, some research questions remain. In future
work, we plan to investigate more strenuous activities as well
as new features and sensor combinations to provide more
reliable information about emotional states “in-the-wild”.
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