
Designing IoT Systems:
Patterns and Managerial Conflicts

Leila Fatmasari Rahman, Tanir Ozcelebi, Johan J. Lukkien
Dept. of Mathematics and Computer Science

Eindhoven University of Technology
P.O.Box 513, 5600 MB, Eindhoven, The Netherlands

Email: {l.f.rahman, t.ozcelebi, j.j.lukkien}@tue.nl

Abstract—The first step in a system design process is to
perform domain analysis. This entails acquiring stakeholder
concerns throughout the life cycle of the system. The second step
is to design solutions addressing those stakeholder concerns. This
entails applying patterns for solving known, recurring problems.
For these there are architecture patterns and design patterns for
architecture design and detailed design respectively. For Internet
of Things (IoT) systems such patterns are hardly defined yet
since experience is just evolving. In this paper, we propose our
definition of an IoT pattern along with its formal specification,
explained by a running example. IoT systems are characterized
by the variety of stakeholders involved throughout their life cycle,
therefore our pattern specification includes means for identifying
possible conflicts between these stakeholders.

I. INTRODUCTION

The design process of a system entails translating a design
problem into a solution blueprint. This involves solving the
issues required for realizing functional requirements while
satisfying certain quality constraints. One strategy is to apply
existing “patterns”, i.e. typical known solutions for recurring
problems. Specifically, a pattern consists of a coherent set of
design decisions which are proven to solve common problems.
Examples of patterns are found in the architecture and include
Client-Server, Peer-to-Peer, Representational State Transfer
(REST) and Publish-Subscribe. Applying patterns simplifies
the design process thanks to the provided structure, typical be-
havior and guidance through terminology. Thanks to patterns,
system designers do not need to solve all issues from scratch
and they can avoid mistakes in their designs to a large degree.
The use of patterns also allows system designers to compare a
set of alternative solutions by analyzing the properties of each
pattern.

In the Internet of Things (IoT) domain the quality con-
straints for design include aspects such as performance, reli-
ability, scalability, reusability, modifiability and interoperabil-
ity. IoT systems are complex due to distributed services on
many IoT devices collaboratively fulfilling the goals of IoT
applications. What makes IoT systems even more complex
is the large number of stakeholders involved throughout the
life cycle of IoT systems. For example, an IoT device [1]
may be developed by a device company, produced by a
manufacturing company, installed by the device owner or by
an installation company and commissioned and maintained by
the device owner or a service company. An IoT service [1]

and IoT application [1] may be developed and maintained
by third party developers using software development kits
(SDK) provided by a device company and/or an IoT platform
provider, deployed on IoT devices inside the local network of
the device owner, using deployment tools provided by the IoT
platform provider. Data generated by a device that belong to
a device owner may also cross the Internet and get stored in
the server of a platform provider or a device company, which
then have physical access to the data. It is likely that there
are conflicts among these many stakeholders in managing the
life cycles of the IoT elements [1] and the data. For example,
conflicts regarding data privacy, data ownership and the desired
system behavior. Therefore, manageability is an important
extra functional properties in IoT. Manageability refers to the
condition where management of data, life cycle [1] and the
corresponding conflicts among the (managing) stakeholders is
in place, allowing the system to work properly.

Depending on the type of applications and the specific
emphasis on certain extra functional properties, IoT system
solutions differ from one another. For an IoT system designer
who is looking for the right solution for specific IoT use
cases and the requirements derived from those use cases, IoT
patterns would represent the options to choose from. They
should also help the designer identify possible managerial
conflicts in systems instantiating the patterns. However, an IoT
pattern is hardly defined yet in the literature. In this paper we
suggest answers to the following questions. 1) What exactly is
an IoT pattern? 2) How do we specify an IoT pattern? 3) What
is an example of an IoT pattern? Section 2 gives an overview
of the literature work on this topic. Section 3 introduces roles
and stakeholders in an IoT system and formally specifies an
IoT pattern. Section 4 provides an example of an IoT pattern.
Section 5 shows how an IoT pattern is applied. Section 6
concludes the paper.

II. STATE OF THE ART

Patterns date back to 1977 when Christopher Alexander
published A Pattern Language: Towns, Buildings, Construc-
tion [2]. Alexander introduced patterns as solutions to common
problems, in order to enable everyone, not only professionals,
to design a building such as a house, a school or a shop, using
patterns documented in the book. Patterns were introduced
in software by the 1995 book Design Patterns: Elements

PerFoT'19 - International Workshop on Pervasive Flow of Things

542

of Reusable Object-Oriented Software [3]. The book defined
(object oriented) design patterns and provided a repository of
examples, aiming at quality properties such as reusability and
separation of concerns. Buschmann et al [4] introduced (soft-
ware) architecture patterns, focusing on system organization
and typical behavior. System and software architecture design
concerns the realization of extra functional properties such as
performance, reliability, scalability and interoperability of a
software system through coordination of distributed software
components [5].

Patterns, in general, refer to a generic structure and behavior.
For (software) design patterns, the structure is often specified
by a class model and the behavior by interaction diagrams. The
instantiation of a design pattern results in a code structure, and
some code can be generated automatically. For architecture
patterns the structure and behavior is at a more abstract system
level. Instantiating an architecture pattern is through choices,
use cases and terminology introduction, and yields a (partial)
system architecture. When these use cases are taken from a
domain rather than from a concrete system design we obtain
a pattern in that domain. IoT represents a domain, a context
say for applications. In our earlier work we have shown the
importance of life cycles of its elements and related use cases,
while we also introduced and classified those elements [1].
Combining these use cases with architecture patterns yields
patterns for IoT systems.

In the literature, we see several examples of IoT patterns.
Reinfurt et al [6] proposed five IoT patterns, namely De-
vice Gateway, Device Shadow, Rules Engine, Device Wakeup
Trigger and Remote Lock and Wipe. These patterns represent
typical solutions for different aspects of their identified core
components in IoT, i.e a device and a back-end server [6]. For
example, Device Gateway and Device Shadow are solutions
for communication between devices and a back-end server,
while Rules Engine is a solution for the processing of control
in the back-end server. We classify these patterns as archi-
tecture patterns as they consist of a set of coherent design
decisions on distributed software components that address the
extra functional properties interoperability [7], availability and
modifiability [7] respectively. Reinfurt et al proposed more IoT
patterns in their other works, such as: patterns for bootstrap-
ping and registration of devices [8]; and patterns for energy
supply, operation mode and sensing mode of devices [9]. The
device bootstrapping and registration patterns [8] consist of
a set of design decisions on distributed software components
that address security and device manageability and therefore
we classify them as architecture patterns. However, the latter
patterns [9] are more about design choices regarding energy
supply, operation mode and sensing mode for IoT devices.
Qanbari et al [10] proposed four IoT design patterns for edge
applications, namely: Edge Provisioning, Edge Code Deploy-
ment, Edge Orchestration and Edge Diameter of Things. In our
view, these patterns are better classified as concrete (partial)
system architecture due to the detailed and specific choices
presented in their solutions, and due to the absence of system
examples from which these patterns are abstracted from.

Based on the IoT pattern examples we found in the li-
terature, we learned that an IoT pattern could have multiple
meanings and that a generic definition of an IoT pattern does
not exist yet. As an IoT system is a complex system involving
many elements and stakeholders, we believe that applying
some formalism in an IoT pattern specification will promote
clarity and precision to the guiding concepts and terminology,
which in turn improves understanding, communication and
analysis during the design process. For example, we can use
the formalism to model relationships between life cycle use
cases [1], roles, stakeholders and managerial controls. This
modeling can help a designer analyze possible managerial
conflicts in system architectures instantiating the pattern, as
discussed in the next section.

III. IOT PATTERN SPECIFICATION

Architecture patterns are particularly useful for designing
systems where software components are distributed in different
devices working together to realize a common goal. IoT
systems are a type of distributed system, but with particular
life cycles. In our earlier work, we define the life cycles of
three main elements in IoT systems, namely IoT device, IoT
service and IoT application which we refer as the generic
IoT life cycle model [1]. The life cycles stages of these

Figure 1. A generic definition of an IoT pattern. An IoT pattern turns
abstract IoT life cycle use cases into role-based use cases by combining
architecture patterns. An IoT pattern instance further turns role-based use
cases into concrete use cases with roles assignment.

elements represent abstract use cases in IoT systems, such
as: development, installation, commissioning, operation, up-
date and decommissioning of IoT devices; and development,
deployment, execution, reconfiguration and termination of IoT

PerFoT'19 - International Workshop on Pervasive Flow of Things

543

services and applications [1]. We refer to these abstract use
cases as IoT life cycle use cases. Each of these use cases
consists of abstract actions that are represented as activities
inside a life cycle stage of an IoT element [1]. An abstract
life cycle use case can be instantiated into multiple concrete
use cases, depending on the type of applications and their
emphasis on certain extra functional properties.

From our survey on existing IoT systems and frameworks
[11], we learned that solutions to these life cycle use cases are
built by a combination of architecture patterns. We also learned
that while some of these systems and frameworks differ in
their deployment and communication protocol choices, they
can resemble each other in structure, i.e. the architecture
patterns they combine, and in behavior, i.e. the actions they
take, when realizing certain life cycle use cases. When we find
IoT solutions with similar structure and behavior, we abstract
them into an IoT pattern. The architecture patterns introduce
concrete actions for the life cycle use cases as well as actors
of these actions which we then refer to as roles. Therefore, we
define an IoT pattern as a typical combination of architecture
patterns for realizing certain IoT life cycle use cases, resulting
in role-based use cases, as depicted in Figure 1. We clarify
this definition with running examples in section IV and section
V.

We now propose our specification of an IoT pattern by
introducing the following concepts and relations (see Figure
2). A life cycle use case of an IoT system is named a task that
the system needs to do. A task is a sequence of actions to be
executed by different roles. An action represents a concrete
step in a concrete use case. A role is implemented by an
entity which is a software element that runs on a machine.
Both entities and machines are controlled by stakeholders.
A managerial domain is the control span of a (managing)
stakeholder.

Figure 2. A conceptual model of the elements of an IoT pattern, showing
concepts and relations for modeling an IoT pattern.

In our attempt to model managerial conflicts, we start by
defining two types of managerial control: managerial control
over data, or data control, and managerial control over system
behavior, or behavior control. System behavior pertains to the

behavior of devices and software elements in the system during
normal operation. Managerial controls, both data and behavior
controls, are controls that can cause managerial conflicts.

Data control can be categorized into physical and logical
data control. Physical data control refers to the ability to alter
or destroy physical data, interfaced by physical access and
control of the machines generating or storing the data. A
stakeholder who has controls over such machines is said to
have physical data control, usually derived from ownership
of the machines. Logical data control refers to the ability to
use meaningful data through query operations, interfaced by
entities that implement data query roles. A stakeholder who
has control over such entity is said to have logical data control.
In IoT, data are mainly generated by the things, i.e. IoT devices
embedded with sensors and/or actuators, which are controlled
by the things’ owner. However, these data may be stored in
a back-end server controlled by a cloud provider. This means
that the cloud provider now has physical control over the data
and may or may not have logical control over data. If the stored
data is encrypted and only the things’ owner has the key to
decrypt the data, the things’ owner has logical control over the
data while the cloud provider only has physical control over
the data.

For modeling managerial conflicts related to data con-
trol, we introduce the concept managerial domain crossing.
A managerial domain crossing occurs when data leaves a
managerial domain and enters another. A managerial domain
crossing can cause managerial conflicts as it adds another
stakeholder to the set of stakeholders having managerial con-
trol over data. In our previous example, data leaves the mana-
gerial domain of the things’ owner and enters the managerial
domain of cloud provider, assigning physical data control to
the cloud provider. A managerial domain crossing requires
trust establishment between the entities that send and receive
the data, for example through authentication, authorization,
secured communication and privacy agreements.

The other type of managerial control, i.e. behavior control,
can be categorized into physical and logical behavior control.
Physical behavior control refers to the ability to define system
behavior through physical access to a machine, which is
installed in the vicinity, that can act as a behavior definer.
A stakeholder who has control over such machine is said to
have physical behavior control. For example, through the Nest
smart thermostat [12], home members and their guests can
physically adjust the desired behavior of the heater based on
certain temperature values. On the other hand, logical behavior
control refers to the ability to define system behavior through
an entity that acts as a behavior definer. A stakeholder who
has control over such entity is said to have logical behavior
control. One example of logical behavior control is by creating
or updating rules through an app, such as the Philips Hue app
[13] that can be used to define the behavior of Philips Hue
lights based on certain presence sensor values. The app then
deploys the new behavior to the Philips Hue bridge via the
network. Another example is by programming a control logic
entity using an integrated development environment (IDE), and

PerFoT'19 - International Workshop on Pervasive Flow of Things

544

deploying the control logic entity to machines in the system
via the network such as described in the Open Architectures
for Inteligent Solid State Lighting Systems (OpenAIS) [14],
a reference architecture for inteligent office lighting which
promotes decentralized control deployment [11]. In these two
examples, Philips Hue app and IDE are the entities that act as a
behavior definer. When multiple stakeholders have managerial
control over system behavior, whether it is physical or logical,
conflicts can occur between the defined behaviors.

Through this modeling we can discriminate different as-
signments of roles and stakeholders and we can see whether
data remains in a single managerial domain or leaves it,
indicating a managerial domain crossing. We can also see
whether a role that manifests a behavior control is assigned
to many stakeholders, leading to managerial conflicts between
the defined behaviors. The designer can then decide on policies
and corresponding mechanisms to resolve these conflicts.

We can now formally specify an IoT pattern and its instance
as follow. An IoT pattern solves a set of tasks T , which
represents IoT life cycle use cases solved in the pattern. Each
task t ∈ T is a sequence of actions a ∈ A where A is the set of
all actions involved in the pattern. For an action a, r(a) ∈ R
is the role that executes a, where R is the set of all roles in
the pattern. An IoT pattern is therefore a role-based use case
specified by sets T , A and R and the assignment of actions to
roles r(a). What follows is the specification of an IoT pattern’s
instance where the roles are assigned to specific entities and
machines, and further to managerial domains and stakeholders.
For a role r, e(r) ∈ E is the entity that implements role
r, where E is the set of all entities in a concrete system
instantiating the pattern. An entity that implements action a,
represented as e(a), is equal to the entity that implements r(a),
and therefore, e(a) = e(r(a)). For an entity e, m(e) is the
machine executing e, where M is the set of all machines in a
concrete IoT system instantiating the pattern. A machine m(e)
is within the managerial domain D which is represented as a
triple consisting of a stakeholder s, a set D.m ⊂M and a set
D.e ⊂ E. We denote d(m(e)) as the stakeholder of managerial
domain D, therefore d(m(e)) = s where m(e) ∈ D.m.

In case a is an action that receives data, we also have x(a),
the sender of a. A data receiving action a with d(m(e(a))) 6=
d(m(x(a))) is said to cross managerial domains. A role r(c)
indicates a role that manifests a managerial control c. Sc

is a set of stakeholders who have control over entities that
implement r(c). Stakeholders in Sc are therefore said to have
managerial control c. The set Sc is a subset of S, which is the
set of all stakeholders in a system. If the set Sc has more than
one member, i.e. |Sc| > 1, multiple stakeholders are assigned
to managerial control c which may cause managerial conflicts.
The next section shows how we can apply this specification
to an IoT pattern example.

IV. AN IOT PATTERN EXAMPLE: LOGIC BROKER

We identify an IoT pattern which we name Logic Broker.
The logic broker pattern is abstracted from the similarities we
found in existing IoT architectures, such as those of Philips

Hue system [13] [15] [16], Nest system [17] [12] and Amazon
Web Service (AWS) IoT Platform [18]. The similarities lie
on the following aspects: (1) the type of application that they
support; (2) the concrete actions involved in their instantiations
of the life cycle use cases application reconfiguration and
application execution; and (3) the architecture patterns they
combine to realize these two life cycle use cases, namely rules
engine [6], API gateway [19] and device gateway [6]. Figure 3
describes the logic broker pattern as an instance of the generic
IoT pattern definition shown in Figure 1.

Figure 3. A definition of the logic broker pattern, described as an instance
to the generic definition of an IoT pattern shown in Figure 1.

The type of application that this pattern supports is a
centralized control application involving devices with vary-
ing communication technologies or protocols. A centralized
control application refers to a control system that deploys
its control function in a central device [11], hence the name
logic broker. Control function pertains to the control logic that
defines system behavior. Based on the nature of its application
type, this pattern forces the realization of two required extra
functional properties, namely modifiability [7] and interoper-
ability [7]. Modifiability refers to the cost of making changes,
in this case, the effort and time it takes to make changes
to the control function of the system. Interoperability refers
to the ability of IoT devices, which may support different
communication technology or protocols, to communicate and
share information over a network and to extract a common
meaning (semantics) from the information that is shared.

The logic broker pattern solves two problems: (1) the prob-
lem of reprogramming the control logic of a centralized control
system through run-time configuration by various clients; and
(2) the problem of executing control logic on data sources and
actuation targets with varying communication technologies
or protocols. The first problem represents an instantiation of
the life cycle use case application reconfiguration, and the
second problem represents an instantiation of the life cycle use
case application execution. Application reconfiguration con-
cerns reconfiguring application parameters, while application
execution concerns activities such as: accessing IoT services,
collecting data and executing application logic [1]. The logic
broker pattern implements a centralized control application by

PerFoT'19 - International Workshop on Pervasive Flow of Things

545

means of a rules engine which executes control logic defined in
the form of rules. These rules can be configured as parameters
of the application.

Figure 4. Role-based use cases of the logic broker pattern, instantiating the
abstract IoT life cycle use cases, i.e. tasks, application reconfiguration and
application execution and their corresponding actions.

The combination of the API gateway and rules engine
architecture patterns allows for reprogramming control logic,
which defines system behavior, during normal operation. This
is done by creating or updating control logic configurations
of the application in the form of rules through a role called
behavior configurer (see Figure 4). These configurations are
then sent to an API gateway and stored in a configuration
repository. An API gateway provides a single entry point for
receiving and translating configuration messages from various
clients. When the rules engine receives event data from a
data source, it looks for relevant rules to execute from the
configuration repository. This allows making changes to the
system behavior easily and therefore improves modifiability
[7]. The use of the device gateway architecture pattern allows
for data sources and actuation targets with varying network
communication technologies or protocols to connect to the
system [6]. This promotes interoperability [7]. Figure 4 shows
the task, actions and roles in the logic broker pattern as a
Unified Modeling Language (UML) sequence diagram. This
sequence diagram represents the behavior view of the logic
broker pattern.

We can formalize the logic broker pattern as follow,
T is the set of tasks addressed in the logic broker pat-
tern, where t1 = application reconfiguration and
t2 = application execution. Let Ati denotes the ac-
tions required to perform ti, then: At1 = {configure
behavior, receive configuration, store configuration}
and At2 = {create data, forward data, store data,
process data, query control logic, execute logic,
create actuate command, receive actuate command}.
Figure 4 shows the assignments of these actions to their
corresponding roles, resulting in role-based use cases for the
two tasks. From Figure 4 we can also see that the actions

which include receiving data are forward data, store data and
process data.

Behavior controls in this pattern are interfaced by enti-
ties that implement the role behavior configurer, therefore
r(behavior control) = behavior configurer. This is due
to the fact that the role behavior configurer acts as a behavior
definer which allows stakeholders, who have control over
the entities or machines implementing this role, to define
system behavior. Let S denotes the relevant stakeholders
in the logic broker pattern, then S = {user, things′

owner, platform provider, things′ vendor, software
programmer}. Sbehavior control indicates the stakeholders in
S who have behavior control in a system instantiating the
logic broker pattern. The value of Sbehavior control is assigned
in the pattern instance. If |Sbehavior control| > 1, multiple
stakeholders have managerial control over system behavior
which can cause managerial conflicts.

Figure 5. A structure view of the logic broker pattern, showing roles and
both control and data flows between them. The machines can be distinct or
shared.

Figure 5 represents the structure view of the logic broker
pattern showing roles in the pattern which will be assigned to
specific entities and machines in a concrete system instanti-
ating this pattern. Each role can be implemented by multiple
entities and an entity can reside in multiple machines. These
machines and entities will then be assigned to the managerial
domains of certain stakeholders. From this structure view we
can see control and data flows between the entities. The next
section describes an example of the logic broker pattern ins-
tance, i.e. the Philips Hue Personal Wireless Lighting System
[13] and how it instantiates the logic broker pattern.

V. APPLICATION TO TECHNOLOGY

As shown in Figure 3, one instance of the logic broker
pattern is the Philips Hue system [13]. In the Philips Hue
system, roles in the logic broker pattern are assigned to
specific entities as shown in Figure 6. Further on, these entities
are assigned to relevant machines in the Philips Hue system
which include: things such as ZigBee sensors, Hue lights [13]
and Internet Protocol (IP) sensors; fog devices such as the
Hue bridge [13]; user devices such as Personal Computers
(PCs) and smart phones; and cloud servers such as the Hue
Portal server [16]. We can see in Figure 6 that a role can be

PerFoT'19 - International Workshop on Pervasive Flow of Things

546

Figure 6. Philips Hue’s instantiation of the logic broker pattern, showing assignment of roles to entities, entities to machines and machines to managerial
domains, resulting in identification of data flows in the system and the corresponding managerial domain crossing properties. Further assignment of entities
to stakeholders results in the identification of managerial conflicts.

implemented by multiple entities. For example, the role device
gateway is implemented by both the entities CLIP Interface
Service and IP-ZigBee Bridge Service. As another example, the
role behavior configurer can be implemented by two different
entities: Web App and Mobile App. One entity can also reside
on multiple machines. For example, Web App can reside on
a number of PCs and Mobile App can reside on a number of
smart phones. There are two managerial domains identified in
the Philips Hue system, that of things’ owner and of platform
provider. In Figure 6, each machine is shown to be under one
of these two managerial domains.

The arrows in Figure 6 show control and data flows between
entities in the Philips Hue system instantiating the structure
view of the logic broker pattern shown in Figure 5. The
detailed interaction between the entities follows the behavior
view of the logic broker pattern shown in Figure 4. In
Figure 6, we can see that there are six possible data flows
between two different entities. To identify managerial domain
crossings, Table I shows the formal specification of the system,
showing data flows which involve data receiving actions in
the logic broker pattern, namely forward data, store data and
process data. From Table I, we see that in data flow 1 to 4,
d(m(e(a))) = d(m(x(a))), therefore, no managerial domain
crossing occurs in these data flows. On the other hand, we
see that in data flow 5 and 6 d(m(e(a))) 6= d(m(x(a))),
therefore managerial domain crossings occur in these data
flows, where data generated in the things’ owner managerial
domain crosses into the platform provider managerial domain.
When these managerial domain crossings occur, managerial
conflicts related to data control may occur between things’
owner and platform provider. Therefore trust should be es-

tablished between the two entities sending and receiving the
data. In the Philips Hue case, platform provider has both
physical and logical managerial control over the data generated
in the things’ owner managerial domain. On the other hand,
after the managerial domain crossings, things’ owner has
no physical nor logical managerial control over these data.
To resolve possible conflicts over data control, authorization,
authentication, secured communication and privacy agreement
are in place to protect the privacy of things’ owner.

From the logic broker pattern specification, we know that
r(behavior control) = behavior configurer, which means
that the role behavior configurer in the logic broker pattern
manifests behavior control. Table II shows the entities that
implement the role behavior configurer and the stakeholders
who have controls over these entities, indicated by Sc, where
c = behavior control. Through entities Web App and Mobile
App, things’ owner and users can create or update rules
(control logic) configuration that define the system behavior
in normal operation. Since |Sbehavior control| > 1, there can
be managerial conflicts related to behavior control. In Philips
Hue system, an example of a managerial conflict is that two
stakeholders can define rules that cancel out one another.

This instantiation exercise also applies to other instances of
the logic broker pattern, namely Nest system [17] and AWS-
IoT-based systems [18], resulting in precise descriptions of
their solution and their managerial conflicts properties.

VI. CONCLUSION

We propose a generic definition of an IoT pattern along with
its formal specification. We introduce concepts and relations
for modeling an IoT pattern and its instances. We also model

PerFoT'19 - International Workshop on Pervasive Flow of Things

547

Table I
MANAGERIAL DOMAIN (MD) CROSSINGS IN PHILIPS HUE SYSTEM

Data
flow

Data receiving
action a

r(a) e(a) x(a) m(e(a)) m(x(a)) d(m(e(a))) d(m(x(a))) MD
crossing

1 Forward data Device gateway CLIP Interface CLIP Sensing Hue Bridge IP Sensor Things’ owner Things’ owner No
2 Forward data Device gateway IP-ZigBee Bridge ZigBee Sensing Hue Bridge ZigBee Sensor Things’ owner Things’ owner No
3 Process data Rules Engine Rules Engine CLIP Interface Hue Bridge Hue Bridge Things’ owner Things’ owner No
4 Process data Rules Engine Rules Engine IP-ZigBee Bridge Hue Bridge Hue Bridge Things’ owner Things’ owner No
5 Store data Data repository Data Storage CLIP Interface Hue Portal Hue Bridge Platform provider Things’ owner Yes
6 Store data Data repository Data Storage IP-ZigBee Bridge Hue Portal Hue Bridge Platform provider Things’ owner Yes

Table II
STAKEHOLDERS HAVING BEHAVIOR CONTROL (c) IN PHILIPS HUE

SYSTEM

No r(c) e(r(c)) m(e(r(c))) Sc

1 Behavior configurer Web App PC Things’ owner
2 Behavior configurer Mobile App Smart phone Things’ owner, users

managerial conflicts of the pattern. We demonstrate their use
on the following running examples: an IoT pattern that we
call logic broker and the Philips Hue system as an instance
of the logic broker pattern. The formalism applied in an IoT
pattern specification can help a designer not only to understand
and communicate better the solution in the pattern, but also to
analyze its managerial conflicts potential during the design
process. By identifying possible managerial conflicts in a
system, a designer can decides on policies and corresponding
mechanisms to resolve the conflicts.

In our attempt to model managerial conflicts, we define two
types of managerial controls namely data control and behavior
control. However, there can be other types of managerial
controls that require definitions and analysis, mainly controls
over actions in the IoT life cycle. We show that managerial
conflicts occur when data leaves a managerial domain or when
multiple stakeholders have the same managerial control over
system behavior. This characterization can be further improved
in the future to include more cases of conflicts.

This work lays the foundation of a pattern language for
IoT. In the future, we can translate this pattern language
into automation tools for IoT solutions, generated through
simple selections of IoT patterns and assignments of relevant
variables, such as roles to entities, entities to machines and
both entities and machines to stakeholders. The generated
solutions should also include establishment of policies or
mechanisms for resolving managerial conflicts.

ACKNOWLEDGMENT

This research was performed within the framework of
the strategic joint research program on Intelligent Lighting
between TU/e and Signify B.V.

REFERENCES

[1] L. F. Rahman, T. Ozcelebi, and J. Lukkien, “Understanding IoT Systems:
A Life Cycle Approach,” Procedia Computer Science, vol. 130, pp. 1057
– 1062, 2018.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and A. Shlomo, A Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, 1977.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing, 1996.

[5] P. Avgeriou and U. Zdun, “Architectural Patterns Revisited – A Pattern
Language,” in In 10th European Conference on Pattern Languages of
Programs (EuroPlop 2005), Irsee, 2005, pp. 1–39.

[6] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of Things Patterns,” in Proceedings of the 21st European
Conference on Pattern Languages of Programs, ser. EuroPlop ’16. New
York, NY, USA: ACM, 2016, pp. 5:1–5:21.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[8] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of Things Patterns for Device Bootstrapping and Registration,”
in Proceedings of the 22Nd European Conference on Pattern Languages
of Programs, ser. EuroPLoP ’17. New York, NY, USA: ACM, 2017.

[9] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg,
“Internet of Things Patterns for Devices,” in Ninth international Confer-
ences on Pervasive Patterns and Applications (PATTERNS) 2017. Xpert
Publishing Services (XPS), 2017, pp. 117–126.

[10] S. Qanbari and et al, “IoT Design Patterns: Computational Constructs
to Design, Build and Engineer Edge Applications,” in 2016 IEEE First
International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI), April 2016, pp. 277–282.

[11] L. F. Rahman, T. Ozcelebi, and J. J. Lukkien, “Choosing Your IoT
Programming Framework: Architectural Aspects,” in 2016 IEEE 4th
International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2016, pp. 293–300.

[12] “Works with Nest.” [Online]. Available: https://nest.com/works-with-
nest/

[13] “Wireless and smart lighting by Philips — Meet Hue,” 2018. [Online].
Available: http://www2.meethue.com/en-us

[14] E. Mathews, S. S. Guclu, Q. Liu, T. Ozcelebi, and J. J. Lukkien, “The
Internet of Lights: An Open Reference Architecture and Implementation
for Intelligent Solid State Lighting Systems,” Energies, vol. 10, no. 8,
2017.

[15] “Hue Developer Program,” 2018. [Online]. Available: https://www.
developers.meethue.com/

[16] T. V. Bui, J. J. Lukkien, E. Frimout, and G. Broeksteeg, “Bridging light
applications to the IP domain,” in 2011 IEEE International Conference
on Consumer Electronics (ICCE), Jan 2011, pp. 235–236.

[17] “Nest.” [Online]. Available: https://nest.com/
[18] “AWS IoT.” [Online]. Available: https://aws.amazon.com/iot-platform/
[19] C. Richardson, “External API patterns,” in Microservices Patterns. New

York: Manning Publications Co., 2018, ch. 8, pp. 253–291.

PerFoT'19 - International Workshop on Pervasive Flow of Things

548

