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Abstract—Pervasive technologies permeating our immediate
surroundings provide a wide variety of means for sensing and
actuating in our environment, having a great potential to impact
the way we live, but also how we work. In this paper, we address
the problem of activity recognition in office environments, as a
means for inferring contextual information in order to automat-
ically and proactively assists people in their daily activities. To
this end we employ state-of-the-art image processing techniques
and evaluate their capabilities in a real-world setup.

Traditional machine learning is characterized by instances
where both the training and test data share the same distribution.
When this is not the case, the performance of the learned model
is deteriorated. However, often times, the data is expensive or
difficult to collect and label. It is therefore important to develop
techniques that are able to make the best possible use of existing
data sets from related domains, relative to the target domain.
To this end, we further investigate in this work transfer learning
techniques in deep learning architectures for the task of activity
recognition in office settings. We provide herein a solution model
that attains a 94% accuracy under the right conditions.

Index Terms—Computer Science; Machine learning; Activity
recognition.

I. INTRODUCTION

The field of computer vision, where the goal is to allow
computer systems to interpret and understand image data, has
seen in recent years great advances with the emergence of deep
learning. Deep learning, has been shown to be the state-of-
the-art technique to solve the problem of object recognition in
image data e.g. [11], [12], [16]. One of the next big challenges
in computer vision is to allow computers to not only recognize
objects, but also activities. This study is an exploration of the
capabilities of deep learning for the specific problem area of
activity recognition in office environments

The area of activity recognition in office environments is
rather complex as a computer vision classification problem. In
related areas such as object recognition, the goal is to identify
distinct objects in images. Activity recognition on the other
hand is normally performed on data where subjects are moving
and interacting. Scene recognition aims to detect and classify
the scenes of images. When it comes to activity recognition
for office scenarios, relevant information about what is going
on can potentially be a rather complex mixture of the three
mentioned categories of visual classification. In order to infer
whether an activity is for example a presentation seminar, it is
not enough to identify the activities of individual users but also

the combination of activities and interaction between them. At
the same time, objects can discern and separate activities from
each other. If a person uses a computer it means something else
than if they are using a whiteboard. Even scene recognition
and context plays some part in this problem space as a group
activity could mean different things if it takes place in a
conference room or a lounge area.

The workplace environment is being impacted by techno-
logical innovations in a significant way, especially with the
recent advent of the internet of things [9]. This transformation
is largely being referred to as the transition to a smart office,
which fosters agile and flexible work. Thus, instead of being
static and passive, the environment adapts and contextualizes
the experience to the needs and preferences of its users. This
can range from controlling things like heating, lighting, or
ventilation in order to increase user satisfaction ( [8], [21]),
to more complex scenarios, where a dynamic set of devices,
with their functionalities and services, cooperate temporarily
to achieve a user goal ( [2], [10]). Hence, detecting activities
in office environment has applications to a large number of
use cases, where the extracted context can be communicated
to various subsystems that could proactively assist office users
or maintenance personal with their daily activities.

However, especially in the case of image data sets, the
training data is often expensive or difficult to collect and label.
Consequently, there is a clear need to reuse and repurpose
existing data sets for new tasks and domains. This approach is
generally referred to as transfer learning, which is the ability of
a system to recognize and apply knowledge and skills learned
in previous tasks to novel tasks or new domains. Specifically,
in this work we set out to investigate the extent to which deep
learning architectures, that prove to have a high performance
in solving image recognition problems, could benefit from
applying transfer learning for activity recognition in office
space environments.

II. RELATED WORK

Several proposals have achieved well functioning activity
recognition algorithms using deep learning and non-visual
data, such as motion sensor data. Yang et. al [20] achieved
promising results using body mounted motion sensors and
deep learning, and displayed a robust model without the need
for hand-crafted feature extraction. A similar approach was
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taken by Ronao and Cho [13], who instead of dedicated
sensors, used smart phones to collect data. Apart from the
obvious difference that none of the two mentioned proposals
used visual data, a key difference from this work is that they
focused on single person activity recognition with no regard
for scene or interaction. However, there are some aspects that
are similar to our work. Namely, Yang et. al [20] achieved
robustness and removed the need for hand-crafted features,
which is similar to the goal of using raw video data as an
input. Ronao and Cho [13] on the other hand went for a more
unobtrusive design, which again is one of the benefits of the
proposed solution of this paper.

In [5], the authors achieved state-of-the-art performance in
group activity recognition in video data through the use of
a hierarchical model that combines a number of techniques.
The authors make use of a tracklet software that first locates
and isolates the people in a frame. The areas of the frame
that contain people are ran through a convolutional network in
order to extract image features, which are then passed through
a long short term memory cell (LSTM), one for each person.
This is to retain temporal features and relative changes for
individual subjects. At the same time, features that relate to
the group of subjects as a whole are used in another LSTM,
and the process is repeated in a two step-method. The solution
achieves an accuracy score of 81.5% when tested on the
Collective Activity Dataset [3]. A benchmark comparison was
presented by fine-tuning the AlexNet pre-trained model and
classifying each frame by itself without temporal features,
which achieved a 63% accuracy. This shows that the authors
significantly improved the scores by introducing their hier-
archical model, where temporal features were used for both
individuals and group separately.

However, the problem space in [5] differs from our setting in
the type of data they are concerned with. Both the Collective
Activity Dataset [3] and the authors’ own sports-dataset are
picturing activity classes that relate to a rather high physical
mobility. Compare this to most activities in an office setting,
such as meetings, presentations or silent work. These type
of classes most often imply that very few of the subjects
in a video move from their seat. Furthermore, their solution
presupposes that the tracklet software for isolating people
works as expected and robustly, which may not always be
the case for scenarios where users sit down, are immobile
or have their back turned to the camera. For instance, many
methods of finding people in frames are based on background
subtraction [19], which relies on people constantly moving in
the frame.

Another work that combines spatial and temporal features
in activity recognition tasks is proposed by Karpathy et. al.
[6], who uses a combination of convolutional and recurrent
neural networks (RNNs) to classify activity in the Sports-
101 dataset, containing a large number of sports videos. They
found that the accuracy results that they achieved using spatial
features in classifying the videos frame-by-frame were 59.3%.
Surprisingly, the inclusion of temporal features using a RNN
only resulted in a very small performance increase, reaching

60.9% accuracy, and their best result achieved 63.9% accuracy.
These results are interesting because it is intuitive that a better
result for video classification should be reached with spatio-
temporal features. In comparison with [5], it does seem like
the type of data and pre-processing that is used has great
significance for the effectiveness of temporal features.

To sum up, it appears that previous state-of-the-art attempts
to address group activity recognition using video data and
deep learning have a few factors in common. It seems like
convolutional neural networks are used as a foundation in most
successful implementations in the field, and they are usually
combined with recurrent neural networks to retain temporal
features. However, the effectiveness of incorporated temporal
features are not guaranteed to yield large performance boosts.
Furthermore, both the level of pre-processing and type of
data can create variations in accuracy, and it does seem like
there are not yet any suggested best practice to approach this
problem.

III. PROPOSED APPROACH

In this section we explain in detail the steps of our
proposed approach. First, a set of controlled experiments
will be performed on an existing data set in a controlled
environment to investigate which deep learning model and
configuration performs best on the given problem of group
activity recognition. Then, a new data set will be constructed
from real world activity in a smart office environment and
evaluated. To this end, we will investigate the extent to which
we can exploit transfer learning in the context of deep learning
models and provide a comparative analysis against models that
are built from scratch.

A. Controlled Experiments

The first stage of the process will use a modified subset
of the data from the AMI Meeting Corpus dataset [4]. The
AMI Meeting Corpus dataset is a set of recordings from
meeting rooms. It includes a large amount of different types
of collected data from each meeting session, including video
data collected with up to six different cameras. Despite that a
number of camera angles were present for each session, only
those that had an overview of the entire room were selected to
be incorporated in the used dataset. While this data set contains
video streams from meeting rooms and office environment, it
does not contain all of the activity classes that are indented to
be used by our model. What it does offer instead, is very
controlled environments where meetings, presentations and
no activity (empty room) are taking place in the exact same
conditions, with the same camera angles, lighting, and even
participants.

For the purpose of our experiments, all video files that
we considered were hand annotated to correspond to one of
three classes: presentation, meeting, or empty. The reason for
selecting these three classes as an initial set of actions for
training comes from the fact that the video files used in the
experiments usually had all three of these classes present in
the same meeting session. This meant that after annotation
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Fig. 1. Accuracy results for:. VGG16(a) using the VGG16 model with random
weights; VGG16(b) using the same model with pre-trained weights from the
Imagenet dataset; and Inception V3 using the Inception model with pre-trained
Imagenet weights.

and splitting the data, there would be instances of each class
where all conditions of the video were exactly the same. The
camera angle, scene, lighting conditions and even people are
the same, but their activity differs. This fact would ideally aid
in avoiding over-fitting the learning model to conditions other
than the activity.

The distinction between meetings and presentations was
defined as follows. A presentation is considered to occur when
all the subjects direct their attention to one person, who is
physically separated from the rest. This could be a person
standing by a whiteboard, projector or other object, while the
rest sit down. A meeting on the other hand is when all subjects
have similar poses and physical location (most often sitting at
the same table), and have their focus directed to the group.

This data set is used to perform initial experiments to find
the best base model for the problem space. As will be evident
later, this is a rather challenging data set and it is expected that
if a model handles it well it could be extendable to more data
and classes. The reason for why no data from other sources are
used at this stage is to avoid over-fitting the model to unrelated
conditions and thus creating unreliable or misleading results.

B. Real World Testing

When a model has been selected given the results of the
controlled experiments, the model will be applied to a novel
data set captured in the IoTaP Lab in Malmö University1.
The data set is captured from two different cameras in the
lab, recording for seven weekdays, and then manually labeled
and sorted into activities. The final model will be trained and
validated using this data to review its performance in a real-
world scenario.

1https://iotap.mau.se
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Fig. 2. Accuracy scores of transfer learning on VGG16 using normal CNN
technique, and with an RCNN model which included an LSTM layer.

IV. EXPERIMENTAL RESULTS

In this section we report on a number of experiments done
on the modified AMI Meeting Corpus data. The videos are
processed in the way that each video frame is extracted into
a separate JPEG image and resized to 224x224 pixels. Each
video is also copied once and flipped horizontally, creating a
mirror image of the original. This was done in order to expand
the total volume of data without having to use exact copies
of previous data. For experiments where no temporal features
were included, and each image was treated as its own discrete
data point, random transformations were made during training
such as zoom, tilt and crop, again to increase data size and
decrease over-fitting. All meeting and presentation videos are
exactly five minutes long, while the empty class videos have a
varying, but shorter length. The videos were split into 25170
images, and 15% of each class were dedicated to a test set.
Images belonging to the same videos are kept together, again
to avoid over-fitting.

A. Transfer Learning vs. Novel Training

Despite the fact that transfer learning, where pre-trained
neural networks are employed and fine tuned in order to solve
new problems, are widely considered to be a practical way to
leverage previous efforts to reduce computational cost in deep
learning tasks, their benefits are not always guaranteed. We
hypothesize that this work will benefit from leveraging transfer
learning, but at the same time there are no widely available
pre-trained networks to use that address a similar problem or
that are trained on similar data. The expectation is that by
using a general object detection network as a starting point,
it’s pre-trained capabilities of detecting mid-level features such
as edges and shapes will aid in classifying the frames of the
AMI Meeting Corpus videos.

For this purpose, both the VGG16 [17] and Inception Model
V3 [18] will be used as a foundation for transfer learning in
this problem. While there are many opportunities to tweak
the learning process using this technique, for example by
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specifying what layers are allowed to update their values in the
original models, or building various models on top of the pre-
trained layers, this stage will aim to achieve a baseline score
of the overall performance of the technique and the different
models. For this reason, all of the layers of the original models
are locked from updating their weights and only a dense 3-
layer model will be built on top of the last non-fully connected
layer of the original models. Note that these experiments do
not take temporal features into account, and thus it treats each
video frame as its own image with no relation to the rest of
the data.

Three experiments were conducted: (i) one where the
VGG16 model was used, and its weights were randomly
initialized, (ii) one where the VGG16 model was used but the
weights were pre-trained on the Imagenet dataset [14], and
(iii) finally the Inception V3 model with pre-trained Imagenet
weights. This allows for comparison between transfer learning
and novel training, and between the VGG16 and the Inception
models. For each experiment we allowed the models to train
for one hour on a GTX 1060 video card.

As shown in Fig. 1, the pre-trained models outperformed
the model that started with random weights by approximately
14-15% The VGG16 model with random weights achieved a
51% accuracy, while the same model with pre-trained weights
achieved 65.5%. However, there was a small difference be-
tween a pre-trained VGG16 model and a pre-trained Inception
V3 model, as the Inception V3 model achieved 64.4 %
accuracy, only 0.9% below the pre-trained VGG16 model.

A separate test was performed using the VGG16 model with
pre-trained weights, but excluding the class empty, so that it
became a binary classification problem between the classes
meeting and presentation. The reason for this is that the two
classes are much more similar to each other than the class
empty, and in the worst case scenario, the accuracy score
could have been achieved by randomly classifying between
the meeting and presentation class, while classifying the empty
class with high accuracy, thus still achieving a good overall
score. The result from this test showed an accuracy score of
67.1%, which disproves the above hypothesis.

B. Temporal Features vs. Only Spatial

In this set of experiments we focus on evaluating the added
value of incorporating temporal features. The reason behind
this experiment is that the activities depicted here are rather
inactive in nature, and it does not seem entirely clear that
video sequences would provide a better understanding of the
occurring activity.

Here were set out to investigate the immediate effects
of incorporating RNN elements to the models. For the first
experiment, a model was built identical to the best scoring
model from the previous section, namely a pre-trained VGG16
model, by removing the top layers, while adding one input
layer, two dense layers and one dropout layer. The difference
in this experiment is that a LSTM layer is added right after
the input to the model. As suspected, this resulted in a much
higher accuracy of 88%, outperforming the corresponding

model without temporal features with almost 11 percentage
points (see Figure 2). This goes on to show that temporal
features indeed provide value to this problem space, and even
produces a substantial improvement. A summary of the results
is given in Table I.

TABLE I
OVERVIEW OF RESULTS FROM EXPERIMENTS COMPARING VGG16 AND
INCEPTION V3, PRE-TRAINED WEIGHTS AND RANDOM WEIGHTS, TWO

CLASS AND THREE CLASS, AND RCNN WITH LSTM USING CONTINUOUS
AND DISCRETE CLASSIFICATION

Base model LSTM Weights Setting Score
VGG16 No Random 51.0%
Inception V3 No Pre trained 64.4%
VGG16 No Pre trained 64.5%
VGG16 No Pre trained ’Empty’ class exluded 67.1%
VGG16 Yes Pre trained Continous classification 52.1%
VGG16 Yes Pre trained Discrete classification 88.0%

C. 3D Convolutional Network

Results from the previous section strongly suggests that
despite the perhaps mild movement done in office scenarios,
the movement that does occur provides means for much better
distinction between activities and that temporal features are
vital for successful classification. As RNN’s with LSTM cells
are not the only means of including temporal features in visual
data neural networks, it does seem viable to explore more
options for temporal feature inclusion. For this reason, a 3D
Convolutional Network was implemented and the data was
reprocessed to fit this kind of model.

In particular, 3D ConvNets treat sequences of images as
three dimensional objects where the images are stacked on
each other and the convolutions are performed on the now
three dimensional block of pixels. These objects have a width
and a height as a normal image, but the depth represents the
different frames of the video separated in the time domain.
This can lead to very heavy computational tasks that require
high-end hardware if the input 3D images are not re-scaled
in all dimensions. In this experiment, each image was scaled
to a width and height of 32 pixels, and a depth of 10 images
in order to handle the task in a reasonable amount of time.
In addition, the images use one channel grey scale images in
each depth layer. The ten frames from each data point used
for the 3D image were not consecutive, but distributed equally
throughout each video sequence.

For this experiment, neither of the base models used in
previous experiments was applicable since they deal in two
dimensions. As the construction of a completely novel model
lies outside the scope of this paper, the model used for this
experiment is given in [1], [7].

The results of this experiment shows that surprisingly,
the 3D CNN with 32x32x10 input data resulted in the best
accuracy score of all experiments so far, reaching a final
accuracy of 94.8% after 100 epochs of training. Figure 3 shows
the progression of the accuracy over the course of training
and reveals that the trend of the accuracy score shows a slight
upwards trend even in the end of training, suggesting that the
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Fig. 3. The progression of accuracy and loss over 100 epochs of training on
the 3DCNN model.

results could be improved even further by allowing it more
epochs. At the same time, it reveals that the training accuracy
is slightly higher than the validation accuracy in the end of the
training phase, which possibly could indicate that the model
is somewhat over-fitting.

D. Bidirectional LSTM and Hi vs. Low Dimension Input

At this stage, the 3D CNN has outperformed all other
models for the relabeled AMI Corpus Meeting dataset used in
these controlled experiments. However, the second best model
is not far behind. The RCNN combining VGG16 features with
LSTM cells reached 88.0% accuracy. Before settling on a
model for further exploration, more experimentation is carried
out on the RCNN model to determine whether we can improve
performance.

The experiments in this section will explore two parameters:
high vs. low dimension input, and unidirectional vs. bidirec-
tional LSTM layers. The first aspect of dimensions refers to
the fact that in the RCNN experiment, the three final fully
connected layers of the original VGG16 model were retained
before using the resulting features as input to the new RNN.
These three layers are each scaling down the data, making the
resulting input to the RNN lower dimensional. By removing
these three layers, the RNN model on top would have higher
dimensional data to work with, which could possibly help the
performance.

The second aspect being tested here is the concept of
bidirectional LSTMs. Normal unidirectional LSTMs retain a
history of past processing, and thus achieving temporal pro-
cessing. By implementing two LSTM layers next to each other
of opposite direction, each data point also gets a reference to
its future state as opposed to only its past. By allowing two
time directions, information about past, current and future data
can be processed at once [15].

In Table II we report results from these experiments. As
expected, the unidirectional LSTM with low dimension input
performed almost precisely the same as the last, most suc-

TABLE II
SCORES FROM DIRECTION/DIMENSION EXPERIMENTS

Direction Dimension Score
Uni High 92%
Uni Low 88%
Bi High 66%
Bi Low 84%

Fig. 4. Heat map representation of movements in a meeting and a presentation
in the exact same environment and camera angle. Top: A meeting and its
heatmap representation. Bottom: A presentation and its heat map representa-
tion.

cessful experiment done in section IV-B. This is of course
a result of the fact that, that experiment used an identical
model with VGG16 as a base model with pre initialized
weights, unidirectional LSTM layer and low dimension input.
Interestingly, using unidirectional LSTM with high dimension
input resulted in an increase in accuracy, achieving 92%,
almost tying the 3DCNN. Bidirectional LSTM layers however
seem to not provide any improvement for either low or high
dimensional input.

E. Discussion

The experiments showed that the best performing model
was the 3DCNN model. It is very likely that the key to
understanding the success of the 3DCNN lies in the nature of
the data and how it is classified, i.e. what high level features
are the most determinant in deciding which class a frame
sequence belongs to, and how well does the model extract
those features. With regards to what the data looks like, each
video sequence used for training and validation is filmed using
a static camera indoors. This means that the vast majority of
movement in each video segment is due to the people in the
frame (if there are any). If a groups of pixels change from
one frame to another, those pixels almost certainly represent a
person in the frame. A very plausible explanation for why the
3DCNN performed so well is that the easiness of identifying
people and moving objects gave it an advantage over the
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VGG16 implementation. This is an inherent advantage of the
combination of the network type and structure of the data.

The pre-trained VGG16 model is very effective in extracting
high level features of images, and would almost certainly
outperform the 3DCNN if determinant factors of classification
included static objects in the video sequences. However, it is
also possible that the general patterns of movement in the
video sequences provided more information than expected.

In order to better understand how impactful these types of
changes were between classes, we implemented a background
subtraction algorithm, that essentially separates a moving
foreground from a static background. The output for each
frame is a binary matrix where each index represents whether
the pixel is moving or not. These values were then used to
create a heat map of movement, where brighter areas represent
high movement activity throughout the video sequence.

As seen in Fig. 4, which portrays a meeting and a presen-
tation from the same recording session and their respective
movement heat maps. The type of movement appear to differ
significantly between the two activities. In the meeting, move-
ment is localized to the attendants seating positions, but in the
presentation movement is much more spread out in the area
where the presenting person is located. Another aspect seen in
the heat map is that the screen present in the image has also
generated changes in pixel values.

With that said, this analysis raises questions about the
generalization and robustness of the 3DCNN technique in this
problem space, especially when the test data set would contain
video sequences that are far less similar in comparison with the
training data set. So far, many, if not most, of the environments
and precise camera angles are present in both the training and
validation data. This fact has two sides to it. On the one hand,
it is safe to say that the model has not over-fitted on specific
features of frames, such as objects in view. On the other hand,
it might have over-fitted the movement patterns of activities
seen from very specific viewing angles. Therefore, the question
yet to answer is whether the model has learned to abstract what
type of movement makes a video sequence likely to belong
to a certain class, or just learned to recognize the patterns of
movement that are occurring in the precise environment of that
data set. With his goal in mind, we design a experiment for
a real-world setup, which we conduct in one of the university
labs, in order to evaluate the extent to which the model can
perform in a more dynamic setting.

V. EXPERIENCES IN-THE-WILD : IOTAP DATASET

During the controlled experiments the 3DCNN produced the
best accuracy results for the AMI Corput Meeting data set, so
this model was selected to be applied in real-world testing.

In order to capture real-world data of office activities, two
cameras were mounted in the IOTAP lab of Malmö University.
These cameras recorded for approximately one week during
office hours and captured in total almost 160 hours of 640p
video, or almost one terabyte of data. The data was then
manually viewed, sorted and labeled to use in testing. Out
of the two cameras, one was mounted in the corner of the

Fig. 5. An image of a meeting captured from corner camera and its movement
heat map .

Fig. 6. An image of a meeting captured from ceiling camera, and its
movement heat map

lab in eye level, and one was mounted on the ceiling. Each
video file is a sequence of between 2 minutes and 3 minutes
30 seconds.

Two different strategies have been employed for evalu-
ation. Namely, validating on randomly selected sequences,
and validating on sequences separated by date of capture.
According to the first strategy, 20% of the data will be selected
randomly for the validation data set and the rest will be used
for training. This gives insight into the model’s accuracy in
correctly classifying unseen video sequences that belong to
(very likely) previously seen situations. The second strategy
is to use the the first five days of captured data as training data,
while the last days for validation. This is more challenging, but
reflects on the model’s capability of generalizing to completely
unseen situations in seen environments.

For the first experiment, we use all data from all two
cameras, randomly selecting 20% of the data for validation
and then training the 3DCNN model for one hundred epochs,
followed by validation. Note that the data is split, such that
video sequences from just one camera at a time are used
for both training and validation. The subset of data from the
ceiling mounted camera reached a very high accuracy of 97%.
Interestingly, the same experiment but with data only from the
corner camera obtained a much worse results, of just 48.2%.

A very likely explanation for the poor results of the corner
camera is that the activities shown are often much less
spatially separated than in the case of the ceiling camera. As
indicated by the heat map movement analysis made for the
controlled experiments in section IV-E, the spatial separation
of movements seems to be an important factor in determining
the activity type. Figures 5 and 6 depict one example of a
meeting with an associated heat map representation of the
movement, for the corner and ceiling cameras respectively.
Clearly, one can notice that the positioning and angle of the
camera, relatively to where the activities are occurring has a
very significant impact on the video scene recorded.
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For the second experiment, a more challenging problem will
be addressed. Specifically, whether the model can perform well
on completely unseen data, depicting situations on different
days than what was used in training. In this section, data
from five of the days of video recording will be used for
training, while another two days are used for validation. The
data from the corner camera produced an accuracy of 45%,
while the ceiling camera obtained 94.2%. Interestingly, the
corner camera and ceiling camera only showed a small decline
in accuracy when using the data from unseen dates, which is
an important indication of the generalization capability of the
model.

Conclusively, the hypothesis that the spatial separation of
movement retrieved from the temporal depth inclusion of the
3DCNN is highly determinant for the models capacity of
assessing activity class, lies very much in line with the analysis
of the results found during the controlled experiments. Results
from both experiments suggests that a camera filming office
activities from an angle where people in the frame are spatially
separated can have a high effectiveness of solving the task if
combined with a 3DCNN model.

VI. CONCLUSIONS

This paper presents a comparative analysis in order to
determine how the task of activity recognition in office sce-
narios could be solved using video data and deep learning.
Two different data sets were used to investigate how to best
construct a model to solve the task of classifying office
activities. First, a subset of the AMI Meeting Corpus data set
was manually re-labeled to fit the problem space, and served
as a baseline for controlled experiments of different models.
It was found that a pre-trained VGG16 model used to extract
features as input to an RNN with a unidirectional LSTM layer
performed very well on the data set, and the inclusion of
temporal data was crucial in reaching high performance. It was
also shown that a pre-trained model significantly outperformed
a randomly initialized model, even though the model was pre-
trained for object detection. The various experiment results
also showed that the specific configuration of the RCNN was
very important in finding the best model, and that performance
varied greatly between different configurations.

The combined results from both the controlled experiments
together with the real world testing strongly suggests that
the task of activity recognition in office environments can
be largely solved by using a 3DCNN and making sure that
the camera angle is sufficient for spatial separation of the
subjects movements. This paper provides an understanding of
how different types of deep learning configurations perform
on the given task and provides an example of a model that
achieves above 94% accuracy under the right conditions.
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