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Abstract—With the number of IoT devices expected to ex-
ceed 50 billion in 2023, edge and fog computing paradigms
are beginning to attract attention as a way to process the
massive amounts of raw data being generated. However, these
paradigms do not consider the processing capabilities of the
existing commodity IoT devices in the wild. In order to solve this
challenge, we are developing a new middleware platform called
IFoT, which processes various sensor data while considering
Quality of Service (QoS) by utilizing the computational resources
of heterogeneous IoT devices within an area. This allows smart
services to be created and processed in parallel by various IoT
devices. In this paper, we show the effectiveness of the IFoT based
approach of constructing services. We designed and implemented
a workspace context recognition service, utilizing environmental
sensor data processed in a distributed manner according to the
IFoT framework. We evaluate the QoS of IFoT middleware
and its feasibility when used on commodity devices such as the
Raspberry Pi, through the service.

Index Terms—Edge Computing, Internet of Things, Middle-
ware, Distributed processing, Activity recognition.

I. INTRODUCTION

Internet of things (IoT) devices continue to be created and
deployed at an increasing rate. The number of IoT devices in
the real world is expected to reach 50 billion by 2023 [1].
With the increase in IoT devices, come the increase in raw
data, most of which is consumed and processed by companies
such as Google, Apple and Facebook, then provided to users as
services that increase quality of life and social media. One of
the key issues in a world that is saturated by the ever increasing
data is how to gather, process and aggregate it with low latency
and low cost.

Cloud computing is currently the main platform used for
deploying IoT services [2]. However, not all cloud-based
approaches may be suitable for services targeted for smaller
communities without suitable access to the global IoT, or for
private and secure services whose data cannot be given to
global IoT systems.

Now edge and fog computing paradigms are attracting
attention with their ability to process data much closer to the
source. In edge-based existing studies [3], [4], edge clouds
are deployed and used in a metropolitan based environment to

process tasks with low delay. However utilization of compu-
tational resources and use of resource constrained devices are
not taken into consideration.

Therefore a new data processing framework called the
Information Flow of Things (IFoT) [5], [6] is proposed for
processing information flow from various IoT devices in a
timely and scalable manner based on distributed processing
on in-situ devices. The IFoT framework flexibly utilizes com-
putation resources of IoT devices existing near the data source,
aiming to efficiently coordinate and maintain smart community
services with low cost and low latency.

In order to realize the IFoT framework, we are developing
a new middleware platform (IFoT middleware) [6]. In the
IFoT middleware, heterogeneous IoT devices are grouped
into clusters and configured to work together to satisfy the
computational demand of services. Services are user created
applications that process and convert raw data into usable ones.
User queries and requests of services, processed through the
platform, need to meet a predetermined service level agree-
ment requirements (SLA). To be able to satisfy a service’s
SLA, the IFoT middleware leverages the cluster’s distributed
processing capabilities.

To demonstrate the effectiveness of the IFoT middleware,
in this paper, we create a use case and deploy a service
that utilizes the middleware. We design a workspace context
recognition service that can be used by offices or buildings
with many rooms. This service use environmental sensors and
commodity IoT devices deployed in various rooms. The target
scenario is suitable on IFoT middleware because it is able to
demonstrate how many heterogeneous IoT devices can be used
to provide services with minimal latency due to its distributed
configuration.

We developed and implemented a distributed machine learn-
ing mechanism to utilize the cluster’s computational resource
[7]. This mechanism is modified and improved in this paper
using a scheduling system which utilizes the in-memory data
structure. With this improvement we were able to generate
responses for multiple queries in 2.3 seconds which can then
be decreased linearly the more nodes are added.

In the following Sections II and III, we discuss prior work
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and the IFoT platform, respectively. In Section IV, we describe
in more detail how we implement and deploy distributed
processing of tasks for a workspace context recognition service
within the platform. In Section V, we show the actual setup
and configuration and the results of the experiments. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

A. Edge and Fog computing

Fog Computing [8] and Edge Computing [9] are paradigms
that mitigate server load by processing data on servers nearer
to the data source. Edge computing may act as a bridge
between IoT devices and the cloud. Edge and fog computing
make it possible to minimize the latency of tasks compared
with the cloud. These platforms perform roles such as IoT
device management, network management and data processing
and transferring. While edge computing is able to minimize
latency as well as efficiently use available bandwidth, it
still faces challenges with regards to data partitioning and
offloading of tasks.

B. Docker Technology

Containerization [10] is technology that is now popularized
by Docker. Docker is a light-weight application that facilitates
the creation of self-contained environments called containers
[11]. These containers are isolated instances similar to the
solution provided by virtual machines (VM). However, unlike
VMs they achieve minimal overhead by sharing the kernel
with the host OS. Docker containers enable one to build
dynamic services which can then be distributed within a
cluster of devices through an orchestrator. Docker has been
used in research that aims to deploy services on single-board
computers [12] [13], as well as in research on cost-efficient
edge frameworks [14].

C. Middleware platforms

While distributed computing through IoT devices using
containers have been an attractive prospect, there is still the
challenge of heterogeneous IoT devices. Research is being
done to address where current frameworks fall short in dealing
with the heterogeneity of distributed computing. Schafer et al.
in Tasklets [15] and Bhave et al. [16] attempted to ease the
burden of heterogeneity for distributed and edge computing by
using middleware and virtualization technologies to efficiently
handle multiple heterogeneous devices and tried to pool their
computation resources together.

While studies on containerization and middleware platforms
have been found feasible and successfully done on commodity
devices such as Raspberry Pi [13], [17], [18], and have been
able to provide some form of distributed processing, these
systems do not focus on providing service for users within
an area. Also, these prior systems and platforms while being
able to create a middleware on heterogeneous devices, were
not utilizing the computational resource of the pooled devices
for more sophisticated data processing/analysis by means of
distributed machine learning.

Fig. 1. Overview of IFoT Middleware Platform Architecture

III. IFOT MIDDLEWARE PLATFORM

The IFoT middleware platform (parts of its mechanisms are
presented in [6]) is a concrete realization of IFoT framework.
It consists of three main layers: Resource Management Layer,
Task Execution Layer and Service Coordination Layer. All
IoT devices in the platform are considered nodes and they
may serve different functions within the architecture shown in
Fig. 1.

A. Platform Architecture

1) Resource Management Layer: Manages IoT devices that
participate in the platform. It consists of the resource broker
(R-Broker). It is manually set by community as (typically) the
most powerful node in the network and has information on all
available nodes. It also manages all the nodes in the platform.

The R-Broker handles resource registration by resource
owners through a web interface. The owners provide in-
formation of IoT devices such as processing capabilities,
available sensors and location details to the resource broker.
The registered nodes are then configured into Docker nodes,
to be configured into either Service Brokers or Service Work-
ers depending on their computational capability, comprising
the service coordination layer and the task execution layer
explained below.

2) Service Coordination Layer: Handles the communica-
tion between end-user and the task execution layer. It consists
of the service brokers (S-Brokers). The S-Brokers manage
services. Each S-Broker is the gateway by which users query
the service through a web interface. S-Broker is assigned
manually by a service creator to (typically) the most pow-
erful node available after the R-Broker. S-Broker manages
multiple S-Workers within its service area and adds more
S-Workers/worker nodes to its manageable resource pool to
provide needed QoS level for the current computation demand
(i.e., the number of queries per unit of time) [6].

3) Task Execution Layer: Handles the execution of services
or task graphs that the platform offers the users. It consists
of service workers (S-Workers). This layer is configured to
function as a cluster and is designed to execute tasks in a
distributed manner.

Once nodes are registered into the platform, they are setup
as clusters for a specific location. Clusters are the task
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execution block of the platform which are composed of the
following:

a) Service Worker (S-Worker): S-Worker is the virtual
representation of the task execution cluster. It is formed by a
Docker Swarm cluster which consists of a master node and
multiple worker nodes. They are in charge with communi-
cating with the S-Brokers regarding the user queries for task
execution. Upon receiving requests, they are the ones that
manage the task distribution to multiple worker nodes.

b) Master Nodes: handle the task distribution to the
multiple worker nodes. Databases such as the environmental
sensor databases, are placed on master nodes as well. In our
implementation these are deployed on Raspberry Pi.

c) Worker Nodes: are the basic execution nodes of the
platform. They are tasked with executing tasks allocated by
the master node. Each worker node is a single IoT device
with limited or constrained computational resources. In our
implementation worker nodes are Raspberry Pi.

d) Environmental sensor database (envDB): are time
series database that collects and aggregates data from the
sensors connected to the platform. Services such as activity
recognition will gather data from envDBs. These are assigned
to the master nodes of S-Workers.

IV. WORKSPACE CONTEXT RECOGNITION SERVICE

A. Service Scenario

In this section, we present a workspace context recognition
service scenario as a typical use case of IFoT middleware
platform.

We assume that future smart offices will have many free
address workspaces where many environmental sensors are
installed as well as having their own network infrastructure.
Employees can freely use these rooms for meetings, work, and
recreation at anytime. However, if the office space is too large,
it is difficult for employees to figure out which workspace
is currently available and suitable for their needs. This is
our motivation to develop the workspace context recognition
service.

Workspace Context Recognition Service: Using this service,
office employees can get useful information regarding the
room context such as the comfort level, noisiness, and the pos-
sible over use or under use of certain rooms. This information
is generated through the data processing (Statistical process-
ing and machine learning inference using pre-trained models
within the platform) of data from environmental sensors which
are located in the rooms. This service can be accessed by
the employees through the S-Broker on the local intranet. All
information remains private since data is only stored locally
within the nodes.

The number of rooms that need to be monitored as well
as people monitoring these rooms, affect the performance of
the platform. Performance can be increased by adding more
IoT nodes into the system, increasing the local computation
resource, thus avoiding the need for a more powerful central
terminal. Clusters of commodity single-board computers such
as Raspberry Pis are more than enough for this application.

Fig. 2. Task graph for workspace context recognition service

Furthermore, having more nodes within the platform allows
the creation of more services that may be needed by employees
in the office space. Addition of a service is simply a case of
adding the required sensors and a task graph that details the
collecting, processing and aggregating tasks.

Other use cases: This framework can be generalized to sim-
ilar use cases which feature characteristics such as: geo-spatial
sensor data, machine-learning, heatmap, etc. Modifications to
the task graph allow the framework to handle such use cases,
without the need for large changes of the entire framework.

B. Details of the Task graph

Task graphs (or service recipes) detail how a service handles
queries by users. Each service has a corresponding task graph.
The task graph for the workspace context recognition service
is shown in Fig. 2. Sensor data is stored inside an envDB
located inside the monitored room. Upon receiving a query,
the S-Broker, executes a task graph that is executed by the S-
Worker(s). The task graph makes use of Redis [19], an open
source in-memory data structure that functions as the main
queueing system of the IFoT middleware. Tasks are queued
onto Redis and then worker nodes monitor these queues and
process them when they are free.

1) Collecting Task: For the current experiment, the query
includes time information for the test room. This time infor-
mation is then sent to a worker node which in turn collects the
data from the envDB inside the room. This task is executed in
parallel for each received query. The worker obtains the data
in the form of a JSON string which is passed onto the queue
for processing.

2) Processing Task: Processing tasks will be done in par-
allel, depending on the number of available worker nodes that
monitor the queue. Upon receiving the JSON string from the
queue, it converts these to a Pandas dataframe. It also loads the
pre-trained classification model that is stored in each worker
node for use. It will then use the loaded model to classify
the status of the room based on the sensor data. The worker
node then sends the classified labels back to the queue for the
aggregator.

3) Aggregation Task: This task is usually done on one
worker node. It will wait either for all nodes to finish or
set a timeout. Upon gathering all the coordinate and label
information, it will generate a heatmap that specifies the usage
of a particular area. This is then saved as an SVG image and
then sent back to the S-Broker for displaying back to the user.
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Fig. 3. Current experiment architecture

V. IMPLEMENTATION AND EVALUATION

A. Implementation

The smart room context recognition service with the IFoT
middleware platform is built using Raspberry Pi 3 Model
B (Pi) and Omron 2JCIE-BL01 Environmental Sensor. The
Pi is equipped with 1.4GHz ARMv8 processor, 1GB DDR2
SDRAM, Wifi and Bluetooth low energy (BLE) connectivity.
It uses Raspbian operating system, a version of Linux Debian,
optimized for ARM. The sensor is a wireless sensor that is
equipped with 7 different sensors: temperature, humidity, light,
UVI, absolute pressure, noise and acceleration. The Omron
sensor measures data at 300 second intervals (this period can
be set between 1 second and 1 hour), at this rate lifetime of
the battery is 3 months. Each period, the sensor obtains the
room’s current temperature, relative humidity, ambient light,
UV index, pressure and sound noise. All these information
are sent to the Pi node, which listens to the sensor beacons
via Bluetooth Low Energy. It receives the sensor information
as well as timestamp, RSSI, sensor MAC address, gateway
address, estimated distance via the RSSI, heat stroke factor,
discomfort index and battery level, which is stored as a row
with 18 columns in the envDB.

Five environmental sensors were placed in a large multi-
function room used for seminars, meetings, recreational ac-
tivities, and discussions. Due to the room’s size, it was
further broken down into several areas as shown in Fig. 4.
The locations of these sensors were chosen to maximize the
amount of data being collected on the varying use of the room
throughout the day. Data is broadcast by the sensors every
5 minutes and were received by a sensor node (Raspberry
Pi) located in the same room. This sensor node is equipped
with an envDB for storing the timeseries data generated by all
the sensors. Transmission of data is through Bluetooth Low
Energy and thus RSSI information was also recorded. Two
Raspberry Pi Camera Module v2 cameras were setup in two
corners of the room, as shown in Fig. 4, to capture ground truth

Fig. 4. Placement of Environmental sensors in the implementation

data during the experiment. We then manually label each 10
minute interval based on the number of people present. We use
4 classification levels No Use, Low Use, Medium Use, High
Use. We set these based on the number of people present in
the room. 0: [No Use], 1-3: [Low Use], 4-9: [Medium Use]
and 10+: [High Use]. This was in an effort to keep training
and classification simple since the experiment location was
a single multi-functional room. Subsequent experiments with
multiple rooms may increase the classification to take into
account more classes.

The classification model is trained using a Support Vector
Classification (SVC) algorithm via Scikit-Learn package. The
features that are used from each sensor are humidity, light,
noise, RSSI, and temperature. The other three features, accel-
eration, UVI and pressure showed little to no changes for the
duration of the experiment and were not used.

Since all 5 sensors were placed in a single room at different
locations, we used each sensor’s 5 different sensor data as
columns. Raw sensor readings were used without further
modification for the data set. This results in a 26 column
dataset (including the timestamp which is used as a feature)
with almost 2000 rows for 4 days of data gathering. This was
trained offline using the SVC algorithm. The resulting machine
learning model which has an accuracy of 62% as shown in Fig.
5, is then saved into a file for distribution to the S-Workers.

In our implementation, the model is sent first to the S-
Broker and is then automatically distributed to the S-Worker
via Python script. S-Worker, located outside the room simply
for debugging purposes, is connected to the university’s net-
work via wired connection. The sensor node, which contains
the envDB, is connected to the same network via WiFi. The
sensor node can also be a worker node of the S-Worker,
however for simplicity, it was configured separate from the
S-Worker. In future experiments, this will be made part of
the S-Worker. S-Workers and S-Brokers connect to each
other through the same network above, via wired connec-
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Fig. 5. Confusion matrix for SVC model

Fig. 6. Demonstration of possible output of the Smart Room context
recognition service, where blank(no use), blue(low use), green(medium use)
and red(high use)

tion. The user can access the S-Broker through any method
(wired/wireless, smart phone or PC) as long as they are
connected to the local area network of the university. In this
case, each worker node receives a copy of the same model.
Upon receiving a user query, the S-Broker, executes a task
graph as shown in Fig. 2. The classification process is then
executed in the following manner: (1) Upon receiving service
requests, the S-Broker divides it into singular room queries.
(2) It obtains and forwards the time information of each room
query into the queue. (3) The S-Worker monitors this queue
and assigns the tasks to a free worker node under it. (4) The
worker node performs the collecting task and then using the
previously received pre-trained model, the processing task. (5)
Upon classification, it then sends the labeled data as well as
other room information data back into a queue. (6) Again, the
S-Worker, monitoring the queue, assigns this to a free worker
node to perform the aggregation task as detailed in Sec. IV-B
The next section discusses the evaluation of this task execution
and the effects of the S-Worker on the QoS.

B. Evaluation: Centralized vs. Distributed Task Execution

Given the setup above, a use case was imagined for the ser-
vice: employees want to know information on the workspaces
in the building. They query the S-Broker for information based

on the sensors deployed in each space. The number of rooms
or number of other entities (e.g., other building staff, local fire
department monitors, etc.) regularly performing such a query
at the same time may vary, leading to scenarios that require
a serviceable quality of service (QoS) from the platform. The
output of a user query is a corresponding label for the room
they are querying, in the future this output can be displayed in
the form of a heatmap as shown in Fig. 6, where room usage
is shown in various colors.

Since we only have sensors placed in a single room, we
simulate how the system would behave when multiple rooms
are being queried at once. To be able to do that, we randomly
select 100 data points (i.e., 100 samples) from the dataset
and set it as the target of query. Since the sensors would be
the same regardless of the room which it is placed in, we
then suppose that each row (a data point) in the data set is a
different room. Based on the study of Egger et al. [20], there
is a direct relationship between delay and dissatisfaction, with
this we aim that the workspace context recognition service
should be able to return a response within around 2 seconds.

We perform the following experiment to investigate the QoS
the platform is capable of delivering. We test the system’s
ability to handle 100 rooms being queried at once. We first
configured the platform such that the S-Worker would only
run 1 worker node and then increase the number of nodes via
the scale-out method detailed in [6].

We consider the total execution time as the time measured
from when the user sent the query until the response of the
heatmap is received by the same user. Fig. 7 shows the QoS
of the platform against the number of worker nodes present in
an S-Worker. Given large sets of data bound in a single query,
a single node on average, total execution time goes beyond
the set limit of 2 seconds and fails to achieve acceptable QoS.
Increasing the number of nodes to 5, allows the platform to
respond with an average of 2 seconds for large data set queries.
This total execution time only goes lower the more nodes are
added.

Next we simulate the effect of in-situ resource provisioning
with scale-out [6], an additional implementation for the IFoT
platform. We overload a single node using the same 100
rows used in the previous experiment, but we divide the
100 rows into individual queries and then send simultaneous
queries to S-Broker. As seen in Fig. 8, using a single node,
it has an average total execution time of 25 seconds. With an
initial 4 nodes, we can decrease this total execution time to 5
seconds, quicker than a single node but still unable to meet
the QoS. Finally, implementing in-situ resource provisioning
to the nearest 3 neighbor nodes, we can decrease the total
execution time to 1.2 seconds.

VI. CONCLUSION

In this paper we designed and developed a use case for
the IFoT middleware platform. The use case of smart room
context recognition system is implemented into the platform
as a service. Users query the service in order to identify the
usage of workspaces in an office environment. The main goal
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Fig. 7. Execution times for large sets of data in single queries with varying
number of workers

Fig. 8. Execution times for small sets of data in multiple parallel queries
with varying number of workers

for the service is to be able to provide a certain QoS such
that the service is able to respond to multiple queries within
2 seconds. We achieve this by using the IFoT middleware
platform that uses pre-trained machine learning algorithms and
computational resources right at the data source to classifiy
and recognize room usage using environmental sensors. In
addition, we implement distributed processing on the platform,
this improves the QoS of the system from a total execution
time of 4.2 seconds to less than 2 seconds. Furthermore, with
the implementation of adaptive in-situ resource allocation, we
show that we can further improve the total execution time for
100 simultaneous requests from 4 seconds to 1.2 seconds.

The platform was implemented on a single room in the
essence of saving time, but we show that this system is feasible
and is able to deliver acceptable QoS regardless of the number
of rooms being monitored.
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