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Abstract—Traditional road maintenance methods are costly;
requiring expensive equipment and manpower. Road quality
categorization based on machine learning techniques, using real-
time opportunistic data gathered from inexpensive open-source
inertial systems, is a promising alternative. Existing open-source
datasets for this problem are small and less representative of
actual situation where data is imbalanced and skewed towards
regular road surface instances. With the help of an inexpensive
device and data collection platform developed by our lab, we
have collected a large, heterogeneous dataset which is more
realistic representative of the problem in real world settings.
There are four kinds of Roadway Surface Disruptions (RSDs)
considered in this work, namely, Cat eyes, Manholes, Potholes
and Speed bumps. The feature set used consists of spectral
features, time-series peaks, statistical features such as Kurtosis
and Skewness and cepstral features such as Mel Frequency
Cepstral Coefficients(MFCC). Feature selection was conducted
using Sequential Forward Selection and Relief Algorithm. Sup-
port Vector Machine (SVM), Convolutional Neural Network
(CNN), Random Forest (RF) and Nave Bayes (NB) were used
for classification. The best results are reported by SVM with the
True Positive Rate (TPR) of 95.2%. These anomaly classification
results can be used as a low-cost road maintenance solution
by road repairing authorities and the road quality maps thus
generated can provide the passengers and drivers with the
information of most comfortable route for their journey. Hence,
the proposed unified classification framework provides a solution
to both of the target audiences by considering relevant anomalies.

Index Terms—Roadway surface disruption (RSD) , Convolu-
tion neural network (CNN), System modeling, Kurtosis, Skew-
ness, Heterogeneous dataset, Mel Frequency Cepstral Coefficients
(MFCC).

I. INTRODUCTION

A large amount of budget is spent on road infrastructure
maintenance annually [1]. The cost includes the money spent
on municipality surveys for road quality assessment and repair
charges. According to American Association of Automobiles,
pothole damages cost around $15 billion to the drivers in the
U.S only, in the past five years [2]. Keeping roadways bump-
free is a difficult task and requires proper information of road

networks all over the region. The unanticipated traffic loads,
harsh weather conditions and usual deterioration, all contribute
to the degradation of roadways over a short-term.
As a passenger or a driver, one would want a comfortable
and smooth ride with least wear and tear of vehicle, but
unfortunately current navigation systems are not capable of
providing an information of such a route. In addition, the
constrained budget of road maintenance authorities makes it
difficult to maintain the quality of roads. This paper addresses
both of these issues and presents a real-time system that can
provide route quality maps to the commuters and information
of worn out roads to the related authorities.
The system presented in this paper comprises of a low-cost
embedded solution, designed and deployed by our lab, that
can be mounted on vehicles and is capable of identifying
the anomalies and categorizing them into sub-groups. We
have opportunistically collected heterogeneous data using 12
different vehicles and shared the dataset publicly [3] for the
research community to perform further analysis and make
improvements. Previous public datasets lacked heterogeneity
owing to the fact that they included equal instances of anoma-
lies and normal events collected in a planned repeated-driving
over the same anomaly events, which is highly unlikely in
actual scenario. Our embedded solution is well suited for this
cause due to the reasons that it is

• cheap and low cost
• small and robust enough to be easily placed on any

location in the vehicle
• gathers real-time patterns of roadway surfaces along with

the GPS coordinates

This system can be installed on vehicles that are meant to
patrol the areas regularly, for example garbage collection
vehicles, taxis and freight-carrying vehicles etc. The data
gathered from all these sources would incur no extra cost and
it will be updated on daily basis as these vehicles would move
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around and would have to perform their duties as per schedule.
For this work we have collected data by using our embedded
system on 12 different vehicles which were driven by dif-
ferent drivers. The system contains accelerometer and GPS.
Accelerometer is responsible for recording 3-axis acceleration
patterns while GPS gathers longitude and latitude coordinates
of the vehicle at run-time. The dataset collected is divided
into four different types of RSDs namely, Manholes, Potholes,
Speed bumps and Cat eyes. The usual road without any
anomaly is tagged as ’Normal’ in the data. Annotation was
done with a separate GUI at the time of data collection and
the anomalies were marked by a person present in the vehicle.
After the data is successfully collected, it is passed through
annotation correction for careful inspection of any mistakes
might be committed at the time of collection. Different features
are extracted from the time-series signal of 3-axis patterns
and are fed to the machine learning classifiers for training.
The dataset required for the two target audience is different
as per their needs. So the dataset prepared for route quality
maps contains all the classes but it is made less complex by
combining all the RSDs into a single class named as Anomaly
and the Normal events are kept in the other class, so in this
case the problem is treated as a binary-class problem. Whereas,
for road repairing authorities, speed bumps and cat eyes are
filtered from the data and the rest of the classes are kept. In
this paper we have treated the problem in both cases, i.e. as a
binary-class problem and as a multi-class problem.
Considering normal events as negative class, the performance
metrics being reported in this paper include True Positive Rate
(TPR), False Negative Rate (FNR) and False Positive Rate
(FPR).

• TPR is for comparing results with other papers
• FNR is for commuters because they will be requiring the

classifier that predicts the normal events better
• FPR is for the road repairing authorities.

II. RELATED WORK

Classifying RSDs has been through many stages ranging
from the use of camera based techniques to static sensors. But
the inertial embedded sensors are being used more recently, as
they are very cost effective and ensure constant road monitor-
ing. In literature, the datasets available are somewhat synthetic
because they lack heterogeneity of classes. In the real-world
scenario anomalies occur intermittently during a drive and
much of the journey contains a good amount of normal events.
Hence, the data must be skewed towards normal events rather
than having equal proportion of all events. Much of the work
is done using smart phone’s accelerometer data and then signal
processing techniques are applied. There is a significant gap
in the literature of application based generalized framework.
Hadia et al. proposed a system that classifies roadway surface
anomalies using different machine learning algorithms. The
proposed system was not generalized for all vehicles, rather
it had a separate feature set and a separate classifier for
each vehicle [4]. Gonzalez et al. used a novel approach of
representing the patterns of acceleration of RSDs by Bag

of Words [5]. They have used Artificial Neural Networks
(ANN), Decision Trees (DT), Support Vector Machine (SVM),
Random Forest (RF), K-Nearest Neighbor (KNN), Nave Bayes
(NB) and Kernel Ridge (KR). However, ANN has given the
best results for multi-classification of five distinct classes,
reporting TPR of 93.8%. This work has reported these results
on the dataset they have collected themselves and shared
publicly but the dataset lack heterogeneity. Also, only the z-
axis acceleration patterns have been used in the dataset which
restricts the exploration of acceleration patterns in other two
axes, i.e. x-axis and y-axis. Mohan et al. have used some
thresholding based techniques to classify the RSDs [6]. They
identified that the major issue being faced is the lack of proper
method for annotation of the dataset, on the basis of which
the classifiers are being trained. The paper attempts to perform
rich sensing which exploits the accelerometer, microphone and
GPS sensor of mobile phone to gather data that can then be
localized with good precision. Eriksson et al. have also used
smartphones to collect data and then annotated it manually
[7]. In their work, they have tried to detect potholes, railway
crossings, manholes, and extended joints. But the same issue
of non-heterogeneous dataset exists in their work. Perttunen
et al. have explored Fast Fourier Transform (FFT) and Mel
Frequency Cepstral Coefficient (MFCC) based features along
all of the three axes i.e. x, y and z [8]. The paper also reported
the dependency of these features on vehicle’s speed and had
attempted to remove that dependency. They have reported
FPR and FNR of 3 percent and 18 percent respectively. The
limitation of this work is the consideration of abrupt instances
only. As they have very distinguishable effect on the speed
of vehicle, they can be classified very easily while comparing
with normal events. Active machine learning is now being used
in online systems for quickly adopting the learning models
with a changed environment [11] i.e. removing dependency
of the vehicle. Transfer learning techniques are also being
investigated in labelling activity recognition data to reduce the
effort and cost [12].
In the literature we have observed expensive and inaccurate
solutions to the problem, unrealistically balanced datasets,
absence of geo-tags in some works, no discussion about
vehicles dynamics dependency on the accelerometer patterns
and end-to-end distinct solutions for any targeted audience.
This paper seeks to fill up this gap of literature and provide
generalized, precise, low-cost and useful application oriented
results.

III. EXPERIMENTAL SETUP

A. Hardware Details

A low-cost, dedicated hardware is designed which logs
the acceleration patterns and longitude/latitude coordinates
using ADXL362 and VK2828U7G5LF sensors respectively.
All this data is stored in an on-board storage (SD card).
The brain behind all the instructions given to the sensors is
PIC18F26K22 micro-controller. The data-logger is powered
by 3.1Ah Lithium-ion battery. Data is collected at 100Hz
frequency but due to the inaccuracy of internal clock, there
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Fig. 1. Embedded sensor attached near the tyre of the car, for data collection

is a margin of 10% error. An average sampling rate of 93Hz
is used for maintaining consistency of the data.

B. Data Collection Details

This process consists of 12 cars, a driver, a co-pilot and
two data-loggers. The first data-logger is mounted outside the
car, on its shock absorber, as shown in Fig. (1). The second
data-logger is placed inside the car, on the dashboard. The
data is being annotated on-the-go by co-pilot, using our own
developed Graphical User Interface (GUI) in MATLAB. By
the end of the journey, a file is generated by the data-logger
that contains vehicle’s speed, GPS coordinates, time stamps
and acceleration readings of 3-axes, per second. The GUI
is designed in such a way that the anomalies are associated
with certain numbers, i.e. if a speed bump is identified by a
button labeled as ”5”, so now if the car traverses through the
speed bump, the co-pilot presses button ”5” as soon as the car
hits the speed bump. The button is kept pressed until the car
has covered the full event and is released when car is back
on the normal road. In this way, the time is logged between
the instances when the button was pressed and then released.
Based on this information we can compare the time stamps
from the file generated by GUI and data-logger to annotate
the data.
It was ensured that each car gathers at least 50 instances of
each RSD. For this purpose, the average journey was 25-30km
long and average time duration was 45 minutes. If the co-
pilot has wrongly tagged an anomaly, he can press the button
for ”Mistake” right after it and then we can correct the label
with manual inspection. Those readings of the sensor were
labeled as ”Normal” for which no button was pressed. The 3-
axes of accelerometer x, y and z are aligned with transversal,
longitudinal and vertical axes of the car. Fig. (2) shows the
experimental setup for data collection.

C. Data Cleaning and Pre-Processing

The data collected by data-logger is at 100Hz and has an
error rate of 10%. So, in order to maintain the consistency
of data, we have linearly interpolated the number of samples
to 93, in every second. The time series data is then divided

Fig. 2. Data Collection: Data loggers are mounted on dash board and near
tyre of the car. Driver and co-pilot are sitting in the car where co-pilot uses
MATLAB based GUI for annotation. The 3 axes of accelerometer x, y and z
are aligned with transversal, longitudinal and vertical axes of the car.

into non-overlapping chunks of 1 second and these chunks
are then labeled by comparing the time stamps logged by
GUI. Similarly, the mistakes encountered by human error were
covered up by careful visual inspection.

IV. SYSTEM MODELLING

To obtain good results from a system, it is very important
to understand its dynamics. The signal we get from the
accelerometer is actually a convoluted signal with additive
noise in it.

a(t) = [ax(t) ay(t) az(t)] (1)

a(t) = a∗(t) + n(t) (2)

where, t = 1, 2, 3, ... a∗(t) ∈ R3 n(t) ∈ R3

n(t) ∼ N
(
0, σ2

n

)
(3)

a∗(t) = aevent(t) ∗ h(t) (4)

Here a(t) represents the data we are getting from the system
and it is a three-dimensional data. a*(t) is the actual signal
and n(t) is the additive Gaussian noise with zero mean and
standard deviation of σ2, hence it can be represented by the
Eq. (3). This noise can be due to temperature drifts and
electromagnetic fields.
Further decomposing a*(t) we get Eq. (4) where the aevent(t)
is the signal of road surface and h(t) is the effect of car
hydraulics/dynamics on this signal. These two signals get
convoluted with each other and hence there is a difference of
signatures of same anomalies by different cars. This problem is
catered in this paper by processing the signal in its frequency
domain and using its cepstral features, as explained in the next
section.
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Fig. 3. Accelerometer patterns of different anomalies.

V. FEATURE EXTRACTION AND SELECTION

Several features were extracted from the time series data
that have been used in the literature. As per the experimental
setup, it is very clear that z-axis acceleration patterns will
help in classifying the anomalies. However, well established
feature selection algorithms have been used for ranking the
potential features from all axes.
The data has been dealt with in terms of windows and each
window is considered as an instance. Hence different features
have been extracted from each of the instances from five
dimensions i.e. X, Y, Z, XY and XYZ. The features are
divided into several groups where Group-A contains FFT
based features, Group-B contains time series peaks, Group-C
contains Kurtosis, Group-D contains Skewness and Group-E
contains MFCC.
The statistical features (i.e Kurtosis and Skewness) have
proved to be very helpful in classification and this can be
easily understood from Fig. (3) where it is very clear that
Speed bump pattern has different tail as compared to other
patterns and Manholes have a skewed pattern. The equation
used to compute these statistical features are given by Eq. (5
and 6).

Kurtosis =
m4

(m2)2
= n

∑n
i=1(Xi −Xavg)

4∑n
i=1((Xi −Xavg)2)4

(5)

Skewness =
m3

(m2)3/2
=
√
n

∑n
i=1(Xi −Xavg)

2∑n
i=1((Xi −Xavg)2)3/2

(6)

The cepstral features(i.e MFCC) also turned out to be
helpful in classifying the RSDs. MFCCs are usually used as
features in speech recognition applications where they are used

Fig. 4. Block Diagram illustrating the steps involved in computing MFCC.

Fig. 5. MFCC co-efficients of Normal and Anomaly Class.

to represent the vibrations of vocal tract. In the context of the
work presented in this paper, our approach is to use these
MFCCs to get an accurate representation of the vibrations
produced when the vehicle passes through a certain RSD.
Different anomalies will produce different types of vibrations,
so a true representation of these vibrations, can help in the
classification of these anomalies.
The steps involved in the computation of MFCCs are shown
in Fig. (4). Computing MFCCs is governed by Eq. (7).

Coef(t, k) =

√
2

N

N∑
i=1

log[Emel(t, i)]cos[k(i− 0.5)
π

N
] (7)

Here N is the number of filters, Emel(t,i) is the ith filters
energy at time t and the order of filter is represented by k in
the equation where k=1,2,3,.....,p.
We have used MATLAB’s MIR tool box to compute MFCC
features which gives us fixed length vector of 13 coefficients
for each instance.
MFCC’s also proved to be useful for resolving the problem
of convolution of the two signals i.e signal of car response
and actual anomaly response. Since MFCCs represent
the signals in frequency domain, so the time convoluted
signals are transformed to additive signals in the frequency
domain. MFCC coefficients are actually the amplitudes of
Mel-frequencies, calculated by DCT and these amplitudes
are treated as a feature to be fed to the classifier. There is a
significant difference among the MFCC co-efficients of the
signals representing normal and anomaly class as shown in
Fig. (5).

The feature vector of one window contains approximately
284 features where FFT based features are extracted from
the combination of axes information [4] i.e. FFT-XY and
FFT-XYZ. The feature vector is then passed through two
feature selection algorithms namely, Sequential Forward Se-
lection (SFS) and Relief Algorithm [9]. For the later, we have
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Fig. 6. Architecture of Convolutional Neural Network

used implementation of Relieff from MATLAB Statistics and
Machine Learning Toolbox.

VI. CLASSIFICATION

Random Forest (RF), Support Vector Machine (SVM),
Convolutional Neural Network (CNN) and Nave Bayes (NB)
are used for classification of data. Three of these algorithms
are fed with hand-crafted features, whereas CNN is a feature
agnostic algorithm and has not been explored in the literature.
We have used RBF kernel for SVM with cost 23.16 and gamma
of 100.985 while treating the problem as a binary classification.
For multi-class classification, we have used one-versus-all
technique. Random Forest was set to 10 number of trees and
Gini index criterion. No prior probabilities were set for NB.
The CNN architecture we have implemented is a 5-layer
architecture consisting of 3 convolutional layers and 2 fully
connected layers. The architecture is shown in Fig. (6). Eq. 9,
10 and 11 represent the vector of an instance in 3-axes. Each
vector has length of 93 samples. By using these vectors we
form a matrix of dimensions 93x3 and feed it to architecture.
Yi is the output of neural network which can be one of
the labels as given in Eq. (11). We have the problem of
imbalanced dataset and to tackle it we have used Focal Loss
[10] which handles this scenario very well. In Eq. (13) ,
pt represents the probability of the class to be predicted.
The γ factor is a hyper parameter that decides how much
penalty i.e. (1- pt), is to be given to the network for a certain
misclassified example.

ax(t) = [ax(1) ax(2) ax(3) .... ax(93)] (8)

ay(t) = [ay(1) ay(2) ay(3) .... ay(93)] (9)

az(t) = [az(1) az(2) az(3) .... az(93)] (10)

Yi ∈ {Manhole Pothole SpeedBump Cateye Normal}
(11)

FocalLoss = FL(pt) = −(1− pt)rlog(pt) (12)

Fig. 7. Route quality maps generated for drivers and passengers as per the
criteria given in table 1

TABLE I
CRITERIA FOR THE EVALUATION OF ROADS

Good ≤ 5 anomalies
Fair 5≤ 10 anomalies
Poor 10≤20

Worse ≥ 20

VII. EXPERIMENTS AND RESULTS

We have combined all the data from different cars, hence
the total of 59916 instances are present. The distribution of
different classes is as follows; 93.2% of Normal events, 2.5%
Speed bumps, 1.8% Potholes, 1.3% Manhole and 1.2% Cat
eyes.
The results obtained from different classifiers are tabulated in
Table (II). The best results are reported by SVM with TPR
95.2, FPR 2.551 and FNR 4.797. The confusion matrices of
binary and multi-class classification are shown in Table III
and IV respectively.

The main emphasis of this work is generation of route
quality maps for drivers/passengers, and road-condition maps
for road repairing authorities. The criteria for generating
road-condition maps is given in Table (I). The maps for route
quality and road-repairing authorities are shown in Fig. 7
and Fig. 8 respectively. The patches are color coded for the
drivers in former and the anomalies are pointed out in the for
authorities in the later.

TABLE II
RESULTS OF MACHINE LEARNING ALGORITHMS

Classifier FPR FNR TPR
SVM 2.6 4.8 95.2
NB 10.1 7.6 92.4
RF 9.6 21.4 78.6

CNN 14.2 11.9 88.1
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Fig. 8. Road condition maps for road repairing authorities

TABLE III
CONFUSION MATRIX OF BINARY CLASSIFICATION USING SVM

Anomaly Normal Total Predicted
Anomaly 1548 78 1626
Normal 114 4354 4468

Total Actuals 1662 4432 6094

VIII. DISCUSSION

From system modeling, it is very clear that the data is
dependent on the car dynamics. Hence for better classification
results, it is necessary to remove this dependency from the data
if we have to increase our data and combine the dataset for
all the different cars.We have tried to remove this dependency
by using MFCC features.
This approach of processing the signal in frequency domain
significantly improved our TPR from 94.08% to 95.2%. How-
ever this problem can also be solved by using the data from
both sensors, i.e. the one mounted on dashboard and the
other mounted near tyre. Similarly, from visual inspection
of anomaly patterns, it is interpreted that cat eyes pattern
resembles to that of potholes and speed bumps’ resembles to
manholes. This is also very much evident from the confusion
matrices. Kurtosis and Skewness were computed for this cause,
i.e. to differentiate between these classes.

IX. CONCLUSION

The main contributions of this work are:

• Heterogonous dataset is gathered; representing the real-
world scenario and shared publicly for benchmarking

• This work is targeted at two audiences, i.e
drivers/passengers and road-repairing authorities,
and generate intelligent maps.

• Statistical features have not been explored in this domain,
and they have significantly improved the results.

• CNN have been implemented which doesn’t require hand-
crafted features. Focal loss is implemented for catering
imbalanced dataset.

TABLE IV
CONFUSION MATRIX OF MULTI CLASS CLASSIFICATION USING SVM

Cateye Manhole Normal Pothole S.Bump
Cateye 192 14 8 68 8

Manhole 42 98 20 90 68
Normal 7 3 558 5 3
Pothole 107 39 18 233 45
S.Bump 17 26 9 24 500

• MFCC features’ use and their clear reasoning has been
provided that has helped us in removing car dynamics
dependancy from the data.

• System modelling is discussed and the major pointers
are identified that can be very helpful in improving the
results.
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