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Abstract—In many countries, bicycling has emerged as a
viable alternative to motorized means of transport. Citizens rely
on bicycles to commute to their workplaces, transport goods,
and use them for sports and leisure activities. Available maps
are, however, often scarce of information with relevance for
cyclists. Besides the presence of tracks, their intersections, and
approximations of their inclinations (through contour lines), little
further annotations are available. In particular, the surface type
of a track (e.g., asphalt, cobbled paving, or soil) is rarely provided,
despite the fact that it determines how easily the track can be
passed in diverse weather conditions. Cyclists will often only
discover the exact track conditions by the time they pass it (or
are unable to pass due to it being washed out or flooded by
rain). In this work, we present SURF, a pervasive computing
application which allows to detect a track’s surface type using
an opportunistic bicycle-centric sensing system. SURF relies on
the processing of images (collected using a handlebar-mounted
smartphone) by means of machine learning tools. We evaluate
SURF using more than 67,000 training images collected during
actual bicycle rides, and show how the system can determine five
major surface types of bikeways at an accuracy of 99.51%.

I. INTRODUCTION

Bicycles have established themselves as a flexible, sus-

tainable, and pollution-free means of private transport. A

general societal trend towards the increased use of bicycles

for everyday activities can be observed in literature [1], [2].

Their adoption is furthermore accelerated by the construction

of designated bikeways in and between cities [3]–[5], which

provide safe and fast options for the daily commute. Routing

cyclists along the network of cycleways and passable off-road

tracks, however, is not a feature widely supported by naviga-

tion applications. Quite the contrary, many existing solutions1

focus on motorized vehicles, for which they even provide real-

time delay forecasts. Cyclists are, however, not necessarily

impacted by the automobile traffic conditions on the roads

they use. They also often have difference routing objectives,

e.g., giving more weight to a smooth elevation profile or

the absence of motorized traffic than to finding the shortest

distance. Aforementioned vehicular routing applications are

thus only partially usable for cyclist navigation, particularly

when considered in conjunction with their limited extent of

information of relevance for cyclists.

1E.g., Google Maps (http://maps.google.com) or Waze (http://www.waze.com)

This restriction is overcome by applications specifically

tailored to cyclist navigation2, the majority of which use

data from the community-driven OpenStreetMap (OSM)

project [6]. This allows unpaved roads, hiking tracks, and even

ferry connections to be considered in the routing process. OSM

also offers the possibility to annotate the surface type of its

contained tracks. This information can be used to determine

routes which are both shorter and cater to the needs of cyclists

better. A current limitation of OSM in this regard is, however,

the incomplete set of surface annotations to provide this

functionality. For example, the OpenStreetMap data for the

German state of Lower Saxony (approx. 8 million inhabitants

on an area of almost 50 000 km2) contains more than one

million “ways”, yet less than 40% of them are provided with

surface annotations. We target to overcome this limitation by

proposing SURF, a system to crowdsource the collection of

track surface information with the help of computer vision and

machine learning. SURF can differentiate between the five

most prevalent surface types of tracks passable by bicycles,

based on photographs from a front-facing camera. The key

contributions of this paper can be summarized as follows:

• We present our concept for SURF, the data processing

system used to categorize the surface of bicycle tracks

based on photos taken from a handlebar-mounted camera.

• We introduce a data set containing 67 000 images from

actual bicycle rides and discuss ways to augment the data

in order to yield a larger number of input samples for

SURF’s machine learning component.

• We evaluate SURF using the aforementioned data set and

measure its classification accuracy as well as discussing

sources of confusion.

We present these contributions as follows. First, we discuss

work related to the vehicle-based collection of data in Sec. II.

We subsequently motivate the viability of camera-based sur-

face recognition in Sec. III, before describing SURF’s model

training process in Sec. IV. The evaluation of SURF using

more than 67 000 actual pictures collected during bike rides

on several types of terrain is presented in Sec. V, and we

conclude this work in Sec. VI.

2Such as CycleStreets (http://www.cyclestreets.net), naviki (http://www.
naviki.org), cycletravel (http://cycle.travel/map), and many others.
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(a) Asphalt track. (b) Gravel track. (c) Cobblestone track. (d) Grass track. (e) Forest track.

Fig. 1. Sample images captured from a smartphone’s built-in camera mounted in different positions on a bicycle’s handlebar.

II. RELATED WORK

A wide range of sensor data can be collected from bicycles

and their riders. Through the combination of dedicated sensing

devices (to measure, e.g., CO2 and NOx concentrations) and

the sensing functionalities provided by smartphones, a compre-

hensive situational picture can be captured [7]–[9]. This allows

bicyclists to retrieve data on their cycling performance, but

also permits them to opportunistically collect environmental

information while riding. In comparison to operating sensors

in motorized vehicles, the limited extent of suspension and the

absence of bodywork even allows for a much more precise

tracking of environmental conditions.

The BikeNet system [10] is one example that integrates

multimodal sensors to capture such parameters. Combined

with location information, the system permits its users to

create maps that show, e.g., experienced CO2 levels, noise

levels, and acceleration/braking data. A camera is also part

of the system, yet only used to capture photographs when

remotely triggered to do so. In a similar fashion, bicyclists can

retrieve exercise-related information and post-exercise analysis

when running the smartphone-based real-time information

feedback system presented in [11]. Road inclination, uneven

road surfaces (“bumpiness”), and the bicycle rider’s body tilt

are collected and used as map annotations in order to be shared

with other cyclists. Other applications that promote the sharing

of encountered environmental conditions with other cyclists

include the WeatherBike [12], a bicycle that has been equipped

with the required sensing devices to collect meteorological

data, as well as SmartBike [13], which uses sensors to monitor

the air conditions in a city. An offline analysis of the collected

data was used in both aforementioned works, overlaying

collected sensor readings on trajectory maps.

In contrast to these comparably holistic approaches of

capturing a bicycle’s environment, other contributions that

focus on individual sensing modalities were also presented

in literature. Gu et al. propose a smartphone-based system

to detect cyclist behavior based on acceleration and angular

rotation measurements [14]. Through the analysis of this data,

dangerous bike-riding practices can be identified, and pin-

pointed to locations at which such riding behavior is exhibited.

Another use of acceleration readings is presented in [15]–[17],

whose objective is to determine the surface type of the road

segment currently driven on. The authors of aforementioned

works, however, note that signal processing is required to

separate cyclist-induced acceleration and tilt signals from the

vibration patterns induced by the road surface, thus increasing

the risk of erroneous surface type detection. An application

with a similar scope has been presented for car drivers, too:

The Pothole Patrol [18] uses acceleration data to distinguish

between different types of road anomalies, targeting to provide

municipalities with information about necessary roadworks.

The use of camera sensors on bicycles has seen less scien-

tific interest, despite the wide availability of handlebar mount-

ing options for smartphones. The PetrolWatch system [19],

even though tailored for its use in cars, however demonstrates

the use of front-facing cameras to autonomously record petrol

prices when passing filling stations. In a similar fashion,

camera-based systems have been designed to determine the

sources of traffic jams, as presented in [20]. Approaches to

recognize road surface types based on pictures taken from a

dashboard camera are presented in [21] and [22]. While the

latter employs deep learning techniques, it is only evaluated in

the context of car-based sensing and disregards surface types

relevant to cyclists. Conversely, the former publication [21]

focuses on the differentiation between road surface conditions

(e.g., dry, wet, or snow-covered), yet does not distinguish be-

tween different types of track surfaces. Hence, we investigate

the concept of using bicycle-mounted cameras in conjunction

with deep learning to classify track surfaces in this manuscript.

III. VIABILITY OF CAMERA-BASED SURFACE DETECTION

The key contribution of this paper is SURF, an automatic

classification system to determine the surface type of tracks
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navigable by bicycles. In contrast to related work [15]–[17],

where such functionality is realized based on acceleration

data, we have decided to use a front-facing camera for two

key reasons. First, camera images are less impacted by the

cyclist’s personal bikeriding style. Thus, less compensation for

user-induced motion (cf. [16]) is required. Second, handlebar-

mounted smartphones are frequently used for bicycle naviga-

tion. Cyclists thus have an intrinsic incentive to mount their

phones in this position, in which the smartphone’s rear camera

points at the ground ahead of the bicycle.

We have confirmed the suitability of this mounting location

through preliminary experiments, in which test subjects were

prompted to affix a smartphone holder to a bicycle’s handlebar.

Fig. 1 shows five representative photographs taken from these

mounting points. With exception of the lower part of the

pictures, in which the front wheel as well as braking and

gear-shifting cables are visible, the front-facing camera always

captures at least a fraction of the track ahead, from which the

type of the track’s surface can be identified by a human.

Based on this observation of the viability of this approach,

we have decided to conduct an investigation to what extent a

correct classification of track surfaces using image recognition

tools is possible. We realize the track surface type detection

in SURF by means of state-of-the-art object recognition tech-

niques, based on deep learning. Despite the ongoing research

on the recognition of objects in images (e.g. [23]), detecting

the surface type of a track is not a frequently considered

setting. Thus, a prior training of the machine learning model

to the specifics of road surfaces is needed before a classifier

can reliably determine the surface of a track. We elaborate on

this training step, the model generation, in the next section.

IV. SURFACE TYPE MODEL GENERATION

SURF’s training phase is based on the data flow shown in

Fig. 2. We explain details for each step as follows in a bottom-

up order, i.e., starting with the deep learning component.

A. Deep Learning

Bicycle tracks can be expected to exhibit different appear-

ances, based on the prevailing weather conditions and the time

of the year. Even two different tracks of the same type (e.g.,

cobblestone) may look substantially different from each other.

Hence, we have decided to employ machine learning in order

to adapt to such situations, aligned with the remarkable results

reported for image classification tasks in related work [24].

Collect images from
smartphone camera

Crop/scale images

Input data augmentation

Deep learning
(TensorFlow)

Pre-trained CNN weights

Pre-defined CNN models

Resampling (pixel area
relation), center cropping,
lower half resampling

Horizontal flipping,
step-wise rotation,
image sharpening

Fig. 2. Data flow of SURF’s model creation phase.

SURF employs the TensorFlow deep learning framework [25]

for the classification of input images. In order to accelerate

the image recognition, TensorFlow can be supplied with pre-

defined models and weights. For TensorFlow’s configuration

in SURF, we have relied on the Inception-v3 [26] and

MobileNetV2 [27] models. The former is well-known for

its reportedly high classification accuracy, whereas the latter

model is renowned for its lightweight nature. To accelerate

the training phase, TensorFlow’s models were moreover pre-

trained using weights resulting from the ImageNet Large Scale

Visual Recognition Challenge 2012 [23].

We have substituted the classification layers of these pre-

trained models by a custom layer implementation to discern

between track surfaces. This classification layer is trained to

differentiate five major types of track surfaces. Four of them

were selected in accordance with existing work on vehicular

applications [22]; the track type “forest” was added due to its

relevance for bicycling. The classes “wet asphalt” and “snow”

proposed in [22] were not used, given that they are seasonal

occurrences. Thus, SURF supports the following surface types:

• asphalt (including any other paved surfaces such as

concrete, tarmac, chipseal, etc),

• gravel (referred to as “dirt” in [22]),

• cobblestone (including setts),

• grass (as sometimes experienced when taking shortcuts

across meadows), and

• forest tracks, which might be covered by soil, twigs,

leaves, or other greens.

Sample images for each of these surface types, collected from

a handlebar-mounted smartphone, are visualized in Fig. 1.

B. Input Data Augmentation

In deep learning applications, a sufficient amount of training

data is required in order to attain good classification results.

Due to the unavailability of well-annotated data sets of bicycle

rides on different terrains, we had to rely on a data set collected

ourselves (cf. Sec. V-A). In order to cope with the limited

number of images in this data set, we assess the impact

of data augmentation techniques in this work, applied in

order to increase the number of training samples and prevent

overfitting. Three input data augmentation techniques were

employed in our analysis:

1) Horizontal flipping: We apply a left-right reversal to

the input image.

2) Step-wise rotation: We tilt the captured images in steps

of 3◦ from −9◦ to 9◦. Pixels that were newly added as

a result of the rotation process were colored black.

3) Sharpening: Through the application of a kernel, we

have enhanced the contrast of edges.

By means of an example, we show the impact of image

augmentation on the input image of a gravel track in Fig. 3.

C. Input Data Preparation

The choice of pre-defined CNN models also affects the

required dimensions of the input data to be processed by Ten-

sorFlow. Given that we will be comparing the performances of
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(a) Original. (b) Flipped. (c) Tilted −9
◦. (d) Tilted −6

◦. (e) Tilted −3
◦. (f) Tilted 3

◦. (g) Tilted 6
◦. (h) Tilted 9

◦. (i) Sharpened.

Fig. 3. Sample images of a gravel track, demonstrating the effect of the different augementation techniques being applied to the input image.

MobileNetV2 and Inception-v3, we preprocess the input files

such that they become the native input size for the CNNs.

To attain pictures of 224x224 pixels (for MobileNetV2) and

299x299 pixels (for Inception-v3), we crop and/or scale the

data according to the three mechanisms described as follows,

all of which were realized using the OpenCV toolkit [28]:

1) Resize: We resample the input images to the dimensions

required using the pixel area relation method.

2) Crop center: We cut out a fragment of the CNN model’s

required dimensions from the center of the input images.

3) Lower half: We use the lower half of the input images

(assuming a portrait orientation of the smartphone on

the handlebar) and resample it to fit the CNN model’s

input size, also using the pixel area relation method.

Examples for the three resizing operations are shown in Fig. 4

(224x224 pixels) and Fig. 5 (299x299 pixels), respectively.

V. SURFACE TYPE MODEL EVALUATION

After having prepared the deep learning model for the

identification of surface types, we assess its classification

performance next. To this end, we have implemented SURF

as described in Sec. IV and used it in conjunction with input

data collected during a multi-day image collection campaign.

A. Collection of Input Data

The images used for SURF’s evaluation were collected

through bicycle rides in the areas of Clausthal-Zellerfeld

and Lüneburg, Germany. A camera-equipped smartphone was

attached to the bicycle handlebar using a mobile phone holder.

As a result of this fixture point, most of the shots are slightly

shifted to the left or to the right along the length of the

handlebar (cf. Fig. 1). So that a larger amount of data could be

collected, videos were recorded while riding the bicycle. From

these videos, individual pictures were extracted using a video

processing tool, and exported as JPEG images at the native

video framerate of 30 pictures per second at a resolution of

1080x1920 pixels.

(a) Bilinear resizing. (b) Center cropping. (c) Lower half resize.

Fig. 4. Visual comparison of the resizing approaches for a 224x224 pixel
output using an input image containing the “grass” surface type.

TABLE I
STATISTICS OF COLLECTED INPUT DATA.

Surface type Number of input images

Asphalt 12,091
Gravel 13,829

Cobblestone 12,261
Grass 13,898
Forest 15,039

Total 67,088

Only every sixth image from the video was used (i.e., the

framerate was effectively reduced to five frames per second)

and stored into the data set. The decision to omit intermediate

images was the very limited extent of changes between suc-

cessive video frames. Using this approach, more than 67 000

images were collected in total. A manual inspection process

was conducted in order to remove images that did not fit

into any of the categories or could not be unambiguously

assigned. For each of the five categories considered (asphalt,

cobblestone, grassland, gravel, forest soil), between 12 000 and

15 000 images remained, with their exact numbers provided in

Table I. It needs to be remarked at this point that existing data

sets (e.g., KITTI [29] or RobotCar [30]) were not suitable

for our evaluation, because they commonly focus on a single

type of environment, predominantly paved roads, and lack the

required diversity.

B. Evaluation Setup

All results presented in this section are top-1 accuracy levels

(i.e., true positive rates), as reported by TensorFlow. We have

selected a 20/70/30 split for our cross-validations, i.e., 20%

of the input were separated for testing (with results shown

as follows) and not used in the training phase. Out of the

remaining data, 70% were used for training, and 30% for

validation, in accordance with machine learning best practices.

(a) Bilinear resizing. (b) Center cropping. (c) Lower half resize.

Fig. 5. Visual comparison of the resizing approaches for a 299x299 pixel
output using an input image containing the “gravel” surface type.
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Fig. 6. Classification accuracy results for all combinations of CNN model,
cropping method, and augmentation technique.

C. Impact of the CNN Model and Image Cropping

Our first evaluation is targeted at determining the accuracy

achievable by the two CNN model types used by SURF, and

to what extent image cropping influences these results. We

thus visualize the classification accuracy values for all com-

binations of the considered CNN models and image cropping

methods in Fig. 6. Note that we have trained, validated, and

tested the deep learning models with input images that were

all cropped/resized in the same way.

The highest overall classification accuracy level (99.4% on

average) is observed when using MobileNetV2 in conjunction

with resized full images, i.e., pictures without any cropping

applied to them. For the same type of images, Inception-v3

yields a slightly lower, yet nonetheless remarkable, classi-

fication performance (98.7%). This not only confirms the

general viability of recognizing surface types from photos

taken by handlebar-mounted smartphones, but also shows that

both classifiers are suitable choices to accomplish this task.

Much lower classification accuracy levels result from the

application of the two other image cropping alternatives: A

degradation by 4.82 percentage points on average is observed

when the center-cropping method is employed, and a further

4.59 percentage points of classification accuracy are lost when

using the lower half of the input images only.

D. Impact of Data Augmentation

Supplementally, we assess how an augmentation of the

training and validation data impacts the classification accuracy.

Each of the augmentation mechanisms described in Sec. IV-B

was applied and analyzed separately. Results are shown in

Fig. 6 and discerned by their color shadings. Note that we have

used both the original images and their processed derivatives

for training and validation. In the testing phase, only non-

augmented images were being used to ensure realistic results.

The results show that none of the augmentation methods has

a consistently positive impact on the classification accuracy.

In some cases, adding horizontally flipped images to SURF’s

training leads to slight accuracy improvements. The remaining

two augmentation techniques consistently have a negative

TABLE II
CONFUSION MATRIX FOR SURFACE TYPE CLASSIFICATIONS (IN PERCENT).

A
ct

u
al

su
rf

ac
e

ty
p
e

asphalt 99.25 0 0.65 0 0.1

cobblestone 0.2 99.65 0.1 0 0.05

gravel 0.4 0 99.3 0.3 0

grass 0 0 0.1 99.75 0.15

forest 0.05 0 0.15 0.2 99.6

Classified as: asphalt cobble gravel grass forest

impact on the overall results. The best overall results were

thus reported when MobileNetV2 was used with horizontal

mirroring used for the data augmentation, with a reported

accuracy of 99.51%. This result is closely tracked by the same

setup without input data augmentation, at 99.48% accuracy.

E. Insights and Discussions

We gained several other insights during the experiments,

selected ones of which we reports as follows.

Confusion: Observed confusion was not equally distributed

but almost always experienced between the gravel and asphalt

types (and vice versa). This can be observed well from the

confusion matrix, shown in Table II. Confusion was mainly

observed at points where surface types change (shown, e.g.,

in Fig. 7a), or when multiple surface types are visible in the

same image (see Figs. 7b and 7c).

Processing requirements: While we have performed the

evaluation on a desktop computer, MobileNetV2 has been

documented to be sufficiently lightweight to be executed on

smartphones [31]. Moreover, promising approaches towards

embedded machine learning are currently being proposed, e.g.

in [32]. Executing the image analysis locally on a bicycle-

mounted device would significantly reduce the incurred net-

work traffic: Only extracted surface information would need

uploading into the map provider’s database instead of sending

captured images or even video streams to a processing server.

Comparison to related work: In published works on road

surface detection, consistently lower classification accuracy

levels are reported (75.051% in [15], 88% in [21], and 92%

in [22]). Our approach outperforms these results, which we

partially attribute to the following reasons:

• Less variability in the camera mounting position,

• Less vehicular traffic in the collected images of bicycling

tracks, i.e., better view of the track ahead,

• Training and testing data were collected from almost the

same environment (little geographical diversity), and

(a) Asphalt surface, clas-
sified as cobblestone.

(b) Asphalt surface, clas-
sified as grass.

(c) Asphalt surface, clas-
sified as gravel.

Fig. 7. Selected instances of surface types falsely classified by SURF.
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• The methodological assessment of the parameter space in

conjunction with the choice of the best-suited parameters.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have presented SURF, a system based on

convolutional neural networks to detect the surface types of

tracks navigable by bicycle riders. Its required input images

can be opportunistically collected from handlebar-mounted

smartphones, which can simultaneously serve as a navigation

aid. This crowdsourcing approach to classify track surfaces can

be used to opportunistically complement the information in

online maps, such as OpenStreetMap. We have demonstrated

the efficacy of SURF with the help of a data set composed of

67,000 images we have collected during bicycle rides. With

an overall accuracy of 99.51%, SURF has demonstrated its

viability and readiness for practical use.

In the future, we plan to optimize SURF for its operation

on mobile devices and build a crowdsensing system that

collects track surface information at scale and improves online

maps therewith. Moreover, we consider to extend SURF by

supplementary sensing modalities (e.g., acceleration data) to

improve the accuracy of the surface classification even more,

and possibly also provide further map data annotations.
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