
A Distributed Semantic Knowledge Framework for
Collaborative Robotics

Soumyadeep Choudhury, Sounak Dey, Arijit Mukherjee
TCS Research & Innovation

Kolkata, India
Email: {soumyadeep.choudhury|sounak.d|mukherjee.arijit}@tcs.com

Abstract—Collaborative work between robots are likely to be a
keystone in Industry 4.0 which talks about large scale automation
in industrial scenarios. The robots in warehouses, retail stores,
manufacturing floors may be guided by a central system, but
in unknown scenarios such as disaster management, or areas
where connectivity may be intermittent, the robots should be
able to coordinate the task(s) at hand among themselves without
having to rely on a central coordinating entity. Further, there
may be a likelihood of situations where the higher round-trip
latency of cloud-based systems may be undesirable. In this
work, we propose a distributed knowledge framework deployed
modularly across multiple heterogeneous robots that enables
them to perform tasks by real time knowledge sharing and
collaboration. We also have performed extensive experiments to
compare performance of such a distributed framework with a
centralised one and reported the results here in detail.

Index Terms—Collaborative Multi-robot System, Distributed
Knowledge framework, Decentralized control, Automation.

I. INTRODUCTION

Industry 4.0 [1] standard proposes autonomy of robotic
agents that are capable of coordinating among themselves, do
inferencing, and take decisions on their own with minimal
human intervention. This kind of capability would be useful
for a team of heterogeneous set of robots, drones, AGVs, etc.
in scenarios like disaster management, search & rescue [2]
etc. However this requires issues of interoperability (arising
from heterogeneity in the team) to be resolved and capability
of self reasoning to be imbibed in order to perform automated
reasoning & decision making. Cloud based knowledge frame-
works like KnowRob, Rapyuta, RoboEarth, etc. [3] [4] [5] [6],
designed using semantic web technologies [7], are some works
which cater to these issues [8]. Robots can submit queries
to such cloud knowledge bases before starting or during the
execution of their tasks. In these systems, all collaborative
information exchange happens via cloud; robots do not com-
municate with each other directly.

Limitations.These cloud based systems, however, introduce
a round trip latency that may grow in some real life scenarios
where network connectivity is lossy and the bandwidth is
low, resulting in non-real time performance of the multi-robot
system. This limits the use of such cloud-based frameworks
in outdoor emergency situations where connectivity cannot be
guaranteed and tasks must be completed within reasonable
time without manual intervention.

One answer to above problem can be a distributed frame-
work, without any cloud component, where one robot in the

team can carry the whole knowledge-base with it so that it is
always within reach of the other teammates. But such system
would be unreliable owing to single point of failure of that
particular robot. Again, owing to the scarcity of computational
resources of a robot, loading its memory with large knowledge
bases can lead to serious performance issues.

Contributions. In this paper, we demonstrate a basic proto-
type of a distributed heterogeneous multi-robot system (refer
Fig. 1), where knowledge base is distributed among robots
in a modular fashion and the robots can handle a stream of
incoming queries on their own. We have:

• shown how a distributed knowledge base amongst mul-
tiple robots can enable them to complete a task set on
their own, and

• extensively studied the performance of this distributed
system compared to its centralised counterpart in different
work situations by varying four parameters: (i) network
bandwidth, (ii) network loss for each such bandwidth,
(iii) no. of robots, and (iv) no. of tasks. The results seem
to favour distributed system in lossy and low bandwidth
situation.

Fig. 1: Distributed knowledge based multi-robot system

In this work, typical robotic issues like mapping, path
planning, collision detection, etc. were not in focus; and that is
why, for experimentation, a simplified model of warehouse is
considered instead of an unknown outdoor environment, where
mapping and path planning would be more complex.

The paper is organised as follows: Section II below de-
scribes the prior arts relevant to our work while Section III
explains the functional components of the system, description
of knowledge bases, system workflow, etc. Section IV provides
the details of experimental design and set up while Section V
reports results of the experiment and their significance. We
conclude in Section VI along with the future works.

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 651

II. RELEVANT WORKS

Systems like KnowRob [3], RoboEarth [5], etc. are cloud
based robotic platforms which, as mentioned earlier, are de-
pendent on cloud and may fail in lossy network situations.
Smirnov et. al. [9] proposed another ontology based collab-
orative robotic system but that too is dependent on a central
server to which robots always communicate during task exe-
cution. Another heterogeneous multi-robot system is proposed
in [10] but it uses one robot as controller thus this system is
prone to single point failure. AMiRALE [11] is a distributed
robotic system but it does not involve semantic knowledge
bases to autonomously execute tasks. SOIFRA [12] is an
interesting distributed robotic system which targets to general-
ize platform-independent algorithms for unmanned aerial and
ground robots but does not involve semantic knowledge bases
to complete a set of tasks. [13] discusses coordinated multi-
robot exploration but does not talk about knowledge sharing
or autonomy. Most of the robots today are ROS-based [14]
that internally uses TCP as communication protocol but TCP
has certain operational overheads. Dey et. al. [15] have done
a performance comparison between TCP and CoAP [16] for
semantic data exchange between the robots. This is relevant
to our work.

III. SYSTEM DESCRIPTION, IMPLEMENTATION AND
WORKFLOW

In this section, we will discuss the functional modules
within each robot, describe knowledge bases and finally will
explain how the distributed framework works using one exam-
ple task. Note, the terms ‘robot’ and ‘robotic agent’ are used
interchangeably in this paper.

A. Functional Components of a Single Robotic Agent

In this distributed multi-robot system, each robotic agent
has seven main modules (refer Fig. 2) as described below:

• Knowledge Base (KB): Each robot contains a knowledge
base (in form of an ontology aka .owl file and related
RDF triple store [17]), which is capable of answering
queries pertaining to a particular domain. For example,
in our case, one robot has Object.owl which contains
feature-details such as weight, size, etc. of objects; an-
other robot contains a Capability.owl which stores capa-
bility of all the robots in the team. Details of these KBs
are discussed in subsection III-B. The terms Knowledge
base and KB would be used interchangeably in this paper.

• Configuration: This module initializes the robotic agent
by reading parameters (for eg. network ip, file paths,
initial location of robot in map, etc.) from a configuration
file. During run-time, these parameters are not change-
able. It also keeps a robot vs. KB list that tells which
robot has a particular KB. Once initialisation is done, it
hands over control to the Controller module.

• Controller: This module syncs data and ensures execu-
tion of correct workflow between rest of the modules.
Moreover, the Controller receives new tasks & identifies
the unknown parameters of the task. It then informs the

Query Handler module to raise required queries. Answers
of these queries are send to the Task Assigner module and
based on its decision, control is handed over to the Task
Execution module.

• Query Handler: Based on the Controller feed, it raises
a set of queries to find out task details, capabilities (re-
quired to do that task), etc. Depending on the availability
of KBs, these queries are submitted either to self-KB of
a robot or to KBs of other robot companions.

• Task Assigner: Once the queries about a task are
resolved and required capabilities, present location of
other robot are available, then this module does a cost
calculation for each robot-task pair. It identifies the robot
with minimum cost, in terms of battery consumption,
so that the task can be assigned to that robot. This
calculation is done in each robot so each robot knows
to whom the task is assigned.

• Task executor: This module finally executes the task
based on assignments. This module also plans the path for
the robot, handles any real time issues during navigation.
For path planning optimised Monte Carlo localisation
technique [18] is used.

• Communication: This module enables a robot to com-
municate with its team-mates and external world via
client/server based mechanism. It helps exchanging
queries-answers, status of a robot, etc. within the team.

Fig. 2: Functional components in a single robot.

B. Description of Knowledge bases

As already mentioned above, we have considered a case of
warehouse (for implementation and experimentation) where
some objects are stored in racks and robots are supposed to
pick them up by navigating via aisles. For this purpose, three
KBs namely Object.owl, Location.owl and Capability.owl are
created that are warehouse centric. Object.owl stores many
features of the objects like color, size, weight, fragility, how
it can be picked up (e.g. by grasping a handle or gripping
its body), price, etc. The second KB namely, Location.owl
stores information about the warehouse map i.e. number and
location of aisles & racks, width and length of navigable paths,
obstacle positions, location of objects stored in the warehouse,
etc. It also contains real time locations of the robots that
are roaming around in the warehouse. Finally, Capability.owl
stores component and related capabilities (such as grasping,

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

652

suction, having arms, wheels, total payload capacity, etc.) of
each and every robot in the team. Fig. 3 below shows a subset
of these concepts and their inter-relations as captured in owls.

Fig. 3: Concepts & relations in modular knowledge bases.

C. Implementation

ROS is the standard robotic operation platform that in-
ternally uses TCP for robotic communications. TCP as a
stack is heavy to be loaded and operated in robots with less
computational resources. Moreover, it’s overhead, owing to
reliability, is a factor for short payload transfers between the
robots. With this, not all robots or drones follow ROS standard.
Thus, a message queue based lightweight open source library
named ZeroMQ [19], that uses ‘ZeroMQ Message Transfer
Protocol’ (ZMTP) internally, is used for internal communica-
tion between robots. Since pub/sub mode is asynchronous, it
introduces unwanted delay and in some cases it incurs high
data loss; thus client/server mode, supported by ZeroMQ, has
been adopted for inter-robot communication. Each robot runs
both server and client instances at the same time; the robot
can answer queries via server instance while it can make
queries via client instance. The knowledge bases are designed
in OWL/RDF format using a well known tool called Protege1.
A python based lightweight library name RDFLib [20] is used
for making queries to the knowledge bases.

D. Workflow

To understand how the collaborative system works, we
take an example task “Pick up a Gucci bag 14” that needs
to be collaboratively carried out by three robots namely
Robot1, Robot2 and Robot3; also consider that three KBs
namely Location.owl, Object.owl and Capability.owl are kept
in those three robots respectively. A step-wise explanation of
the workflow (refer Fig. 4) to execute this task is given below:

Step 1. As the task comes to the Controllers of each robot,
they first need to know whether Gucci bag 14 exists in the
Object.owl. The Controller sends this instruction to Query
handler and it executes Query 1 as shown below. As Robot2
has Object.owl, so it executes a self-query where other two
robots send their queries to Robot2:
PREFIX ns_2: <http://www.tcs.org/2018/Object#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?object
WHERE
?object rdf:type ns_2:PersonalItems .
?object ns_2:Product_name ‘Gucci_bag_14’.

1https://protege.stanford.edu/

Fig. 4: A sample workflow to demonstrate collaborative task
execution by three robots.

Step 2. If the output of above Query 1 is negative, then the
task is skipped (as there is nothing to do) by all three robots
and the next task in the pipeline is processed; otherwise the
robots need to know the location details of the object (i.e. at
which rack & aisle of the warehouse the bag is located ?).
Thus all the robots executes Query 2 below:
PREFIX ns_1: <http://www.tcs.org/2018/Location#>
SELECT ?loc ?warehouse ?aisle_no ?bin_no ?rack_no
WHERE
ns_1:Gucci_bag_14 ns_1:Available_At ?loc.
?loc ns_1:Location_name ?warehouse.
ns_1:‘Gucci_bag_14’ ns_1:Inventory_aisle_no ?aisle_no.
ns_1:‘Gucci_bag_14’ ns_1:Inventory_bin_no ?bin_no.
ns_1:‘Gucci_bag_14’ ns_1:Inventory_rack_no ?rack_no.

Here, Robot1 having Location.owl will generate a self-query
where rest two will submit this query over network to Robot1.

Step 3. Once the coordinates of the Gucci bag 14 is found
then the robots need to know the details about the features of
that object such as how it can be picked up, what is its shape,
whether it is fragile or not, etc. These information can be used
for cost calculation later. Thus all the robots execute Query 3
below:
PREFIX ns_2: <http://www.tcs.org/2018/Object#>
SELECT ?frag ?price ?color ?shape ?dim ?grip
WHERE
ns_2:‘Gucci_bag_14’ ns_2:Item_fragility ?frag.
ns_2:‘Gucci_bag_14’ ns_2:has_shape ?shape.
?shape ns_2:Item_dimension ?dim.
ns_2:‘Gucci_bag_14’ ns_2:can_be_picked_by ?grip.

As the Object.owl contains all these information, Robot2 will
execute a self-query while Robot1 and Robot3 will submit the
query to Robot1 over network via their Communication mod-
ules. The value of query variable grip can be gripping,
suction etc. This value will be passed to next step. Say, the
value is gripping.

Step 4. Next, the robots need to know which robot has the

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

653

required capability of gripping (and has hardware compo-
nent gripper as well) to pick up the bag with its handle. If
more than one robot have same capability, then their present
carrying capacity would be queried (as they may already be
carrying some load as part of some older task). Query 4 below
finds out all these capability related information from Robot3,
which contains capabilities knowledge base:
PREFIX ns_3: <http://www.tcs.org/2018/Capability#>
SELECT ?robots ?robo_name ?payload
WHERE
?robots ns_3:Can_Pick ns_3:gripping.
?robots ns_3:Robot_Id ?robo_id.
?robots ns_3:Robot_payload ?payload.

Say, Query 4 returns ?robots=Robot3. This means Robot3
has a gripper and it can pick the bag. With all these information
in hand, the Controller of each robot invokes the Task Assigner
module to initiate cost calculation which computes cost of
doing the aforesaid picking task by each of the robots. As
a result, Robot1 computes the cost for Robot2, Robot3 and
itself. Same computation is performed by other two robots
so that all three robots know which of them has minimum
cost against this task. In this case, it will be Robot3; so, Task
Assigner of Robot3 will kick-off its Task executor module so
that task execution can start, while Robot1 and Robot3 will
jump to next task in the queue because they know they are
not going to do this task.

Decision of task assignment could be made in another way:
let one robot calculate the cost and then communicate the cost
value to others (compute and communicate). In our case, we
chose compute by all strategy. Apparently these two strategies
have same efficiency but if network bandwidth is weak, which
is our focus area, then compute and communicate strategy
may take more time, resulting into delay in kicking off task
execution.

IV. EXPERIMENTAL SETUP

Experiment design. As we want to compare the perfor-
mance of the distributed knowledge system against a cen-
tralised one with respect to robotic tasks in poor network
condition, we have designed the experiment in following
fashion:

• Three groups of robots (R1, R2, R3) are taken comprising
of 3, 6 and 9 robots respectively.

• Five task-groups (T1, T2, T3, T4, T5) have been created
comprising of 5, 10, 20, 40 and 80 tasks of picking
objects respectively.

• Each group of robots has performed the tasks in all task
groups i.e. each Ri, i ∈{1, 2, 3} has performed Tj , j ∈
{1, 2, 3, 4, 5}.

• Each {Ri, Tj} pair has been tested for four different
network bandwidths Bk, k ∈ {1, 2, 3, 4} having values
35 kbps, 128 kbps, 256 kbps, 512 kbps respectively.

• Each of {Ri, Tj , Bk} has been tested under different
network loss condition Lp, p ∈ {1, 2, 3, 4, 5} having
values 2%, 5%, 10%, 15%, 20% respectively.

• All these tests, as stated above, have been executed
with all the varying parameters again with the whole
knowledge base being stored in one remote cloud.

• A comparison between distributed and centralised version
is recorded in terms of time to complete the task and total
bytes exchanged over the network.

We have taken our network bandwidths to be in the range of
cellular network bandwidths [21] like GPRS(35KBps), EDGE
(135 KBps), etc. to ensure poor network conditions. High
end cellular bandwidths like HSPA (1 Mbps) or WiFi are not
considered because cloud connectivity would not be a problem
in those cases. We also have assumed that:

• Tasks are sequentially triggered into the robotic team
from an external source.

• Each robot knows what knowledge base is present with
other team mates (thanks to the configuration file).

• For simplicity, task of picking is considered.
Setup. In typical robots, the computational resources like
memory, processing power etc. are usually scarce. In our lab,
we initially started executing our experiment using 3 custom-
made R-Pi based robots which has 1 GB RAM each. We
first checked the practical feasibility of the system using those
custom-made R-Pi robots (as shown in Fig. 5) in a 3-robots-
5-tasks scenario and it worked as per expectation.

But for practical complexity of experimenting with more
than three robots, we had to simulate the robots using virtual
machines (VM). Each VM has only 900MB RAM, keeping in
mind the resource scarcity in robots. These VMs, representing
the actual robots, communicate with each other via an internal
network. NetEm [22] utility has been used for configuring
different bandwidth and loss condition of this network. Wire-
shark [23] is used to capture network traffic and latency. Each
VM has a running instance of robotic agent as per Fig. 2 and
they communicate with each other via client/server mode.

Fig. 5: Experiment with three R-Pi based robots.

V. EXPERIMENTAL RESULTS & DISCUSSION

In this section we present the experimental results, their
significance and related explanations. Fig. 6 shows a compar-
ison between centralised and distributed system in terms of
total no. of exchanged bytes at 35 Kbps bandwidth and for 5
tasks. The network loss (in %) has been varied and the no.
of exchanged bytes over network is recorded for 3, 6 and 9
robots. The graph shows that the network traffic (i.e. bytes
exchanged) for distributed system is nearly 42% less than that
of centralised system for 2% network loss, and it does not
change much even if the loss increases to 20%. Thus, the
distributed system clearly wins. Similar behaviour is observed

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

654

for other bandwidths but those results are not reported here in
order to reduce redundancy.

Further, looking closely at Fig. 6, it is observed that for 35
Kbps scenario if the no. of robots increases (from 3 to 6 to
9) then the network traffic decreases approximately by 1% in
each case. As shown in Fig. 7, this behaviour is same for all
the other network bandwidths, i.e if the team size increases
then network traffic decreases, keeping the no. of tasks and
network loss unchanged. Fig. 7 however shows the plots for
distributed case only. Similar plots will be there for centralised
system too.

This result seems surprising but the reason is: in our
experimental setup, we have not pushed N tasks sequentially
to the group of robots; instead we have divided N tasks into
two equal sets (in case of 6 robots) or into three equal sets (in
case of 9 robots) and pushed each such task-set to a cluster
of 3 robots for parallel processing. Thus in 9-robots case, N
tasks are processed in parallel by 3 clusters of robots so that
each cluster processes N/3 tasks effectively, while in 6-robots
case, each cluster processes N/2 tasks and in 3-robots case, one
single cluster processes all N tasks. As no. of bytes exchanged
is directly proportional to the no. of queries made by robots,
which is again proportional to the no. of task that a robot
handles, this phenomena results into slight increase in network
traffic as the no. of robots decreases.

Fig. 6: Comparison of centralised vs. distributed system in
terns of no. of bytes exchanged over network for different
network loss % for 35 Kbps and 5 tasks.

Fig. 6 above does not capture effect of increasing no. of
tasks on network traffic. Fig. 8 reports that. It shows a compar-
ison between distributed and centralised system with respect
to total no. of bytes exchanged over network for different
sets of task and different network loss conditions keeping
bandwidth fixed at 35 kbps and no. of robots being 3 only.
Here we see that: as the no. of tasks increases exponentially
(i.e. 5, 10, 20, 40, 80) so does the no. of related queries to
the knowledge bases of each robots and this results into more
network traffic. But we see that distributed system performs
better for each task-set. Same comparison were done for other
three bandwidths and similar trend is observed (related graphs
are not shown here in order to save space).

Fig. 7: Trend of network traffic (in No. of bytes exchanged)
for different sets of robots for 5 tasks over network bandwidth
of 35 Kbps.

Fig. 8: A comparison of network traffic (in terms of no. of bytes
exchanged) to complete the different sets of task by 3 robots
under different network loss conditions at 35 Kbps bandwidth.

Though Fig. 8 shows centralised system performs worse
than distributed one, but the trend of worsening is not very
clear. Here in Fig. 9 we report that by showing the trend of
difference of no. of bytes exchanged over network between
centralised and distributed system by varying the no. of
tasks. It shows that for a given network condition (35 Kbps
bandwidth and 2% loss), bytes exchanged for the centralised
system grows exponentially for increasing no. of tasks i.e. as
more tasks are coming in, centralised system consumes more
network bytes compared to distributed system. The reason is:
if each task generates Q queries and of them say 2 queries
(on average) are resolved internally (in case of distributed
system) then for N tasks, there are N*(Q-2) queries are going
in network. But for centralised system, N*Q queries are going
in network. This difference (2N) is increasing as N increases
resulting into an increase in difference in network traffic. On
the other hand, for a given set of tasks, there is not much
change in network traffic even if we increase no. of robots.

Task completion time is a very important metric to measure
performance of a robotic system. Fig. 10a shows comparison
between distributed and centralised system with respect to task

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

655

Fig. 9: Trend of difference in no. of bytes exchanged between
centralised and distributed system for varying set of tasks
under constant network condition.

completion time for different sets of task and different network
loss conditions, for 35 kbps bandwidth and for 3 robots.
Fig. 10b, Fig. 10c and Fig. 10d show similar comparison for
other network bandwidths. Here also we see that distributed
system performs better than centralised system in each situa-
tion. Moreover, as the network loss increases, task completion
time also increases for a given task set. As the network goes
from low to high bandwidth, we see task completion time is
decreasing as expected.

(a) 35 Kbps (b) 128 Kbps

(c) 256 Kbps (d) 512 Kbps

Fig. 10: A comparison of Task completion time between
distributed and centralised system for different sets of task
by 3 robots under different network conditions

It is not very clear from Fig. 10 that how the task completion
time varies between centralised and distributed system for
different sets of task. Hence, Fig. 11 below shows that the
behaviour over different task sets done by different sets of
robots under 35 Kbps bandwidth and 2% network loss. It
shows that for all sets of robots, the difference is not huge
for smaller number of tasks; but as the no. of tasks increases

the difference grows. This means: for larger no. of tasks
performance of centralised system worsens. Fig. 12a shows

Fig. 11: Trend of difference in task completion time between
centralised and distributed system for varying sets of tasks
under constant network condition.

below a comparison of task completion time between different
sets of robots (i.e. 3, 6, 9) for different number of tasks
under different network loss conditions in distributed sytem
for 35 Kbps network bandwidth. Fig. 12b, Fig. 12c, Fig. 12d
shows the same comparison for the other three bandwidths. We
observe that for all four bandwidth cases, as the no. of tasks
increases so does the task completion time, which is expected.
But if no. of robots is increased for a given set of task then task
completion time reduces. Reason for this is already explained
in second paragraph of this section. Moreover, for a given no.
of tasks, if the network loss increase then task completion time
will also increase slowly. This is again as per expectation for
obvious reasons.

(a) 35 Kbps (b) 128 Kbps

(c) 256 Kbps (d) 512 Kbps

Fig. 12: A comparison of task completion time in distributed
system only by different sets of robots under different network
loss at different network bandwidths.

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

656

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a distributed semantic
knowledge based multi-robot system and compared its perfor-
mance issues with a centralised system in different situations.
As a next step, we have started testing the robustness of this
system (in case of failure of one or multiple robots in the team)
and are working on a related backup strategy. To improve
on scalability and security issues, using Information Centric
Network (ICN) [24] is one of the future plan.

REFERENCES

[1] M. Hermann, T. Pentek, and B. Otto, “Design principles for
industrie 4.0 scenarios,” in System Sciences (HICSS), 2016 49th
Hawaii International Conference on. IEEE, 2016, pp. 3928–
3937.

[2] “Imavs 2016 competition,” http://www.imavs.org/2016/
competition.html, [Online; accessed 22-Nov-2018].

[3] M. Tenorth and M. Beetz, “Knowrobknowledge processing
for autonomous personal robots,” in Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on. IEEE, 2009, pp. 4261–4266.

[4] M. Stenmark and J. Malec, “Knowledge-based instruction
of manipulation tasks for industrial robotics,” Robotics and
Computer-Integrated Manufacturing, vol. 33, pp. 56–67, 2015.

[5] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea,
“Rapyuta: The roboearth cloud engine.” in ICRA. Citeseer,
2013, pp. 438–444.

[6] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel,
“Rapyuta: A cloud robotics platform,” IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 2, pp. 481–
493, 2015.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 34–43, 2001.

[8] G. s. Stephan, H. s. Pascal, and A. s. Andreas, Knowledge
representation and ontologies. Springer, 2007.

[9] A. Smirnov, A. Kashevnik, S. Mikhailov, M. Mironov, and
M. Petrov, “Ontology-based collaboration in multi-robot sys-
tem: Approach and case study,” in System of Systems Engineer-
ing Conference (SoSE), 2016 11th. IEEE, 2016, pp. 1–6.

[10] T. R. Wanasinghe, G. K. Mann, and R. G. Gosine, “Distributed
collaborative localization for a heterogeneous multi-robot sys-
tem,” in Electrical and Computer Engineering (CCECE), 2014
IEEE 27th Canadian Conference on. IEEE, 2014, pp. 1–6.

[11] V. Autefage, S. Chaumette, and D. Magoni, “Distributed collab-
orative system for heterogeneous swarms of autonomous mobile
robots,” in Protocol Engineering (ICPE) and International Con-
ference on New Technologies of Distributed Systems (NTDS),
2015 International Conference on. IEEE, 2015, pp. 1–7.

[12] W. A. Arokiasami, P. Vadakkepat, K. C. Tan, and D. Srini-
vasan, “Interoperable multi-agent framework for unmanned
aerial/ground vehicles: towards robot autonomy,” Complex &
Intelligent Systems, vol. 2, no. 1, pp. 45–59, 2016.

[13] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider,
“Coordinated multi-robot exploration,” IEEE Transactions on
robotics, vol. 21, no. 3, pp. 376–386, 2005.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no.
3.2. Kobe, Japan, 2009, p. 5.

[15] S. Dey, A. Bhattacharyya, and A. Mukherjee, “Semantic data
exchange between collaborative robots in fog environment: Can
coap be a choice?” in 2017 Global Internet of Things Summit
(GIoTS), June 2017, pp. 1–6.

[16] Z. Shelby, K. Hartke, and C. Bormann, “The constrained
application protocol (coap),” RFC 7252, 2014.

[17] S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia
of database systems. Springer, 2009, pp. 2008–2009.

[18] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo
localization for mobile robots,” in Robotics and Automation,
1999. Proceedings. 1999 IEEE International Conference on,
vol. 2. IEEE, 1999, pp. 1322–1328.

[19] P. Hintjens, ZeroMQ: messaging for many applications. ”
O’Reilly Media, Inc.”, 2013.

[20] R. Team, “Python library rdflib,” 2013.
[21] “What are the actual speeds of gprs, edge,

umts, hspa, etc,” http://www.speedguide.net/faq/
what-are-the-actual-speeds-of-gprs-edge-umts-hspa-366,
2014, [Online; accessed 22-Nov-2018].

[22] “Netem,” http://man7.org/linux/man-pages/man8/tc-netem.8.
html, [Online; accessed 22-Nov-2018].

[23] “wireshark,” https://www.wireshark.org/, [Online; accessed 22-
Nov-2018].

[24] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
B. Mathieu, “A survey of naming and routing in information-
centric networks,” IEEE Communications Magazine, vol. 50,
no. 12, 2012.

MUSICAL'19 - International Workshop on Mobile Ubiquitous Systems, Infrastructures, Communications and
AppLications

657

