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Abstract—Wearable devices are spreading for various appli-
cations. However, many users quit using them partly because
of the maintenance cost for charging or replacing batteries. To
overcome the problem, some manufactures have applied energy
harvesting to wearable devices. Nevertheless, the performance
of such devices is still limited due to the limited amount of
harvested energy. In this paper, we investigate a novel design of
cooperative wearable devices to enhance its performance in terms
of reliability and accuracy. Our key idea is applying ambient
backscatter to battery-less (i.e. energy harvest) wearable devices
for wireless communication among them. Ambient backscatter is
an emerging technology which achieves ultra-low power wireless
communication. We focus on travel context estimation as a target
application and design a framework by combining battery-less
wearable devices and ambient backscatter. Since the energy of
the battery-less devices is still limited, the framework should
be energy efficient. We carefully design the division of tasks
considering the classification algorithm. The experimental results
show our frame work achieves 92% accuracy while the energy
consumption is up to 52.94 µW, which is sufficient to work with
the energy harvesting.

Index Terms—activity recognition, battery-less devices, ambi-
ent backscatter, decision tree

I. INTRODUCTION

With the emerging growth of Internet of Things (IoT)
technologies, wearable devices are rapidly spreading to our
daily life for various applications such as healthcare, fitness
tracking, elderly care, etc. However, many users stop using
them partly because of the maintenance cost for charging
them or replacing their batteries [1]. Many manufactures and
researchers have been working to overcome the problem by
combining various technologies such as energy harvesting
and low power operations. Nevertheless, the performance of
such devices is still limited because the amount of harvested
energy is tiny. This is critical for some tasks such as activity
recognition which essentially require continuous sensing.

To tackle with the problem, we investigate a novel design
of cooperative battery-less wearable devices to enhance its
performance in terms of reliability, accuracy, and so on. The
key idea is to utilize ultra-low power wireless communica-
tion called ambient backscatter [2] for cooperation among
the devices. Ambient backscatter communication has been
attracting great attention because it achieves ultra-low power
wireless communication (µW level) by leveraging ambient
Radio Frequency (RF) such as TV. It generates 0/1 bits
by switching the antenna impedance between reflective and
absorptive, which is easily achieved by a transistor switch with

ultra-low power. Our aim is to enhance the performance of
battery-less wearable devices by dividing tasks such as sensing
and processing.

In this paper, we focus on travel context estimation such as
walking, bus, and train as a target application and design a
framework based on the combination of battery-less wearable
devices and ambient backscatter to enhance the accuracy and
robustness. Although some researchers make effort to save
energy of activity recognition (e.g. decrease sampling rate
[3], use low-power sensors [4], etc.), they assume the battery
has sufficient energy. Ref. [5] combines battery-less devices
attached on shoes and ambient backscatter to count the number
of steps. However, to the best of our knowledge, the feasibility
and the performance of the travel context estimation by the
battery-less devices are not investigated yet.

The performance of the battery-less device depends on the
amount of harvestable energy and the energy consumption for
the tasks such as sensor data acquisition, data processing, and
backscatter communication. Although the harvested energy
varies depending on the environment, the energy consumption
depends on the operation of the device. Therefore, we design
the framework for travel context estimation and evaluate its
performance and energy consumption. For the travel context
estimation, we need a low-power design since the battery-less
device operates by harvested energy. We select a classifier
based on Decision Tree (DT) which is lightweight in terms of
computation. To show the feasibility and the effectiveness of
our design, we also implement the classifier on the micro-
controller. The experimental results indicate the classifier
achieves up to 92% accuracy while the energy consumption is
less than 52.94 µW, which is sufficient to work with the small
amount of harvested energy.

In summary, our contributions are three-fold:
• We carefully design a framework for travel context esti-

mation by cooperation of battery-less devices.
• We present a method to reduce the traffic focusing on the

characteristic of Decision Tree.
• We show its feasiblity and effectiveness through real

experiment incuding prototype implementation.

II. RELATED WORK

A. Activity Recognition

Human Activity Recognition (HAR) has been widely stud-
ied in ubiquitous and pervasive computing communities. The
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majority of HAR methods use accelerometers while some
works additionally use various sensors such as a gyroscope
and a magnetometer.

In travel context estimation, Ref. [6] shows that the fusion
of GPS and an accelerometer improves the accuracy. When
an accelerometer is used at sampling rate of 10Hz with GPS,
the accuracy improves by 27% compared to an accelerometer
only [7], [8]. However, GPS greatly increases the energy
consumption, which is not suitable for energy harvesting
devices. On the other hand, Ref. [4] proposes a novel concept
using a barometer for low power travel context estimation. The
only disadvantage is the target travel contexts are limited to
those with significant changes in atmospheric pressure such as
idle, walking, and vehicle.

To reduce the energy consumption of HAR, Ref. [9] in-
vestigates the trade-off between the accuracy along with the
sampling rate and the energy consumption. Although they
show the high accuracy is still achievable even at the low
sampling rate, they still rely on the battery, which is different
from our design principle.

B. Backscatter Communication

Since the concept of ambient backscatter [2] was pro-
posed, many researchers have proposed various backscatter
communication techniques. Originally, Ref. [2] has shown
that the transmission rate of ambient backscatter is 1 kbps
over distances of 76 cm. To further enhance the capability of
ambient backscatter, Parks et al [10] extended transmission
distances more than 24 m even through walls by applying a
coding mechanism called µcode, which is suitable for analog
(ultra-low power) hardware implementation. Passive Wi-Fi
[11] achieves a communication distance of 100 feet at a rate of
1Mbps to 11Mbps by controlling RF transmitted by the base
station.

By using these technologies, we can realize cooperation of
battery-less sensors. In this paper, since we assume the travel
context estimation, we use ambient backscatter [2] which can
be used in various outdoor environments.

C. Battery-less Sensing

Battery-less sensing operated by energy harvesting is one
of the challenging topics where many researchers have been
working. For long-term periodic reports of sensing data,
Ref. [12] presents various sensors that generate power by
surrounding heat source or temperature change. Also, an
energy harvesting pedometer is proposed in Ref. [5] which
divides the sensing task and the Bluetooth transmission task
between the energy harvesting devices attached to the left and
the right feet by leveraging ambient backscatter. The above
works achieve battery-less sensing with energy harvesting by
limiting its capability to some simple targets such as periodic
reporting of sensor data and step counting. On the contrary,
Ref. [13] proposes pervasive self-powered HAR by using
energy harvesting which directly estimates activities from the
amount of harvested energy. However, the result indicates that

Fig. 1. An example scenario.

a hybrid approach of an accelerometer and the energy harvester
is important for accuracy.

Compared to the previous works, our goal is to investigate a
novel concept of cooperative battery-less wearable devices in
order to enhance HAR performance. In this paper, we focus
on travel context estimation and present its design through
prototype implementation.

III. SYSTEM DESIGN

A. Overview

Fig.1 illustrates our example scenario. The user wears
battery-less devices on multiple parts such as a shoe and
a wrist. We use accelerometers of multiple body parts and
a barometer for travel context estimation. This is because
the accelerometer can provide useful information in terms of
various HAR and the barometer is typically low power due to
its lower sampling rate compared to the other sensors. Each
device processes its sensor data and transmits the result to
a central device by ambient backscatter. The central device
estimates the travel contexts by combining the sensor data
from multiple devices. In this paper, we define the target travel
contexts as {Walking, Idle, Going up stairs, Going down stairs,
Bus, Train} based on our subjects’ travel contexts in their daily
commute.

In the following sections, we describe the travel context
estimation designed for the above cooperative battery-less
devices considering the energy consumption followed by the
prototype design.

B. Travel Context Estimation

1) Preprocessing: We apply both high-pass and low-pass
filters to the acceleration. The high-pass filter removes the
influence of gravity and captures vibrations specific to trains
and buses while the low-pass filter keeps the direction of
gravity and mitigates the noise. Also, by applying a low-
pass filter to the barometer readings, we remove the barometer
noise. The high-pass filtered value xh(t) at time t is defined
as

xh(t) = x(t)− xl(t), (1)

where x(t) is the sensor reading at time t and xl(t) is the
low-pass filtered value at time t. xl(t) is given as

xl(t) = α · xl(t− 1) + (1− α) · x(t) (2)
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TABLE I
FEATURE CANDIDATES

Feature formula

average x =
1

N

N∑
i=1

xi

dispersion σ2
x =

1

N
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(xi − x)2

skewness αx =
1

N

N∑
i=1

(
xi − x

σx
)3

kurtosis βx =
1

N

N∑
i=1

(
xi − x

σx
)4

signal power x2 =
1

N

N∑
i=1

x2i

covariance σ2
xy =

1

N

N∑
i=1

(xi − x)(yi − y)

root mean square γxyz =

√
x2 + y2 + z2

where α is the weight, which is empirically set to 0.9 in this
work.

2) Feature Extraction: We extract features from the filtered
acceleration and pressure by a sliding window of width W .
In this paper, we set the W = 4s and the overlap rate of the
window to 50%. We carefully design the feature candidates
for low energy consumption as shown in Table I. For the
acceleration, we select the mean, variance, skewness, kurtosis,
and signal power for each of the three axes, the covariances of
xy, yz, and zx, and the root mean square of the three axes. We
use the both of low/high-pass filtered acceleration to extract
the above features. We note that we do not use the feature in
the frequency domain since the Fourier transform incurs a high
computation cost. The pressure is mainly used for the travel
contexts which lead to elevation change such as stairs. We
select the change of the pressure in 10 seconds as the pressure
feature. We note that the length of the feature vector depends
on the combination of battery-less devices. For each device,
we obtain 38 features from its accelerometer. Therefore, for
example, if we use two devices, the feature vector length is
77 consisting of two sets of 38 acceleration-based features
and one barometer-based feature. We investigate the effect of
the combination of the devices as well as feature selection in
Section IV-C.

3) Classification by Decision Tree: In HAR, various ma-
chine learning algorithms are used to build classifiers such as
Support Vector Machine, Random Forest, and Deep Learning.
However, the computation cost of these methods is relatively
high if we implement their classifiers on a low-power micro-
controller. Therefore, we use Decision Tree (DT) for the
classifier since it consists of if-then clauses, leading to the
low computation cost and simple implementation.

4) Context Correction Algorithm: The output of the classi-
fier may be wrong due to remaining noise or temporal change
of sensor readings. To mitigate such effects, we leverage the
knowledge on the natural travel behavior that the travel context

does not change frequently. Since the classifier outputs the
estimated context every time window, we take the majority
of the M consecutive windows to obtain the final estimated
travel context.

C. Prototype Design for Energy Consumption Measurement

To evaluate the energy consumption of the battery-less
devices, we design a prototype consisting of an accelerometer,
a barometer, and a micro-controller. We use MSP430FR59691

as the low-power micro-controller. The MSP430FR5969 has a
16-Bit RISC architecture up to 16MHz Clock and optimized
ultra-low-power modes. The energy consumption in the active
mode is 100µW/MHz. A deep sleep mode is also available,
which consumes less than 1 µA. The micro-controller oper-
ates at 1 MHz clock in the active mode while it waits for
interruptions from the sensors in the deep sleep mode.

For the accelerometer, we use ADXL3622 which can store
170 samples each for 3-axis acceleration in the buffer. For the
Barometer, we use DPS3103 that has a 32-sample FIFO buffer
and the temperature sensor for calibration.

To evaluate the energy consumption of ambient backscatter,
we reproduce the same operations of the micro-controller
during transmission and reception of the backscatter commu-
nication. Ambient backscatter uses FM0 coding [14]. FM0
coding has a symbol transition at the beginning of each bit
period, meaning a transition of every mid-bit for ’1’ and
no transition for ’0’. The Tx operation is reproduced by
switching the output of the micro-controller pin according
to the transmission rate. The Rx operation is reproduced by
checking the input value of the micro-controller pin according
to the same rate.

In our classifier implementation, we significantly reduce
the traffic amount exchanged among multiple devices by
focusing on the characteristic of DT. Since a node of DT is
a simple comparison of a single feature, each device extracts
the features and computes the result (true or false) of each
node which is related to the sensor readings of the device.
Then, each node transmits the results along with their node
IDs. The bit length of the node ID depends on the depth k of
the decision tree defined as k− 1. The central device receives
all the results from the other devices to classify the travel
contexts.

IV. EXPERIMENT

A. Settings

To evaluate the performance of the travel context estimation,
we asked three male subjects to collect acceleration and
atmospheric pressure in various travel contexts. We collected
35 mins idle, 40 mins walking, 10 mins going up/down stairs
each, 30 mins bus, and 40 mins train travel context data from
each subject. We note that contexts are labeled as train only

1http://www.ti.com/product/MSP430FR5969
2https://www.analog.com/en/products/adxl362.html
3https://www.infineon.com/cms/en/product/sensor/barometric-pressure-

sensor-for-consumer-applications/dps310/
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TABLE II
SENSORS FOR DATA COLLECTION.

Attached Part Sensor
shoes, bag ATR-Promotions TSND121

trousers pocket LG Nexus5
left arm Microsoft Band2

Fig. 2. Sensor placement.

when trains are moving since there is no significant sensor
readings during stops at stations.

For data collection, we used sensors listed in Table II. Each
subject placed the sensors as shown in Fig.2. The sampling
rate of acceleration on the wrist is 62 Hz due to the device
constraint while it is 100 Hz for the other parts. The sampling
rate of atmospheric pressure is 10 Hz. We re-sampled the
original data to simulate lower sampling rates. We simulated
6, 12.5, 25, and 50 Hz for the acceleration and 1 Hz for the
pressure.

We conducted leave-one-subject-out cross-validation where
the two of the subjects’ data are used for the training while the
other is used for the testing. To eliminate the bias due to the
sample imbalance, we used SMOTE [15] for oversampling.

B. Effect of Sampling Rate

Fig.3 shows the context estimation accuracy of the different
sampling rate. For comparison, the figure also shows the result
of Random Forests (RF). We set the depth of the DT and RF
trees to 6 and the number of RF trees to 100. We note that
similar trends are observed in other metrics such as the F1-
score.

From the result, we see DT achieves the highest accuracy for
the sampling rate of 12.5 Hz. The accuracy of RF increased
with the increase of the sampling rate although we do not
observe the similar trend in DT. This is because RF is more
robust to fluctuation of sensor readings by using the results of
multiple decision trees with randomness. Nevertheless, DT can
achieve the comparable accuracy in the appropriate setting.

C. Selection of Features and Tree Depth

We used the feature importance obtained during the learning
phase of RF for feature selection. We sorted the feature candi-
dates according to the importance and used top-N features. We

Fig. 3. Effect of sampling rate on the accuracy.

Fig. 4. Accuracy for different tree depth and features

also changed the depth of the tree. Fig.4 shows the accuracy
for the different numbers of features and tree depth. Fig.4
shows that the accuracy is 89.3% for the tree depth of 5
and 30 features, which is almost the same as the 89.5% for
the tree depth of 8 and 29 features. The 30 features include
the dispersion and signal power after high/low-pass filtering
from multiple devices. In particular, many features from shoes
have high importance since the vibration of trains and buses
is clearly captured. The importance of many features of the
bag and pocket was also high although that of the wrist device
was relatively low. This is because the wrist device captures
various hand motions, which is difficult to estimate the travel
contexts. From the above result, we use the tree depth of 5 in
the following evaluation.

D. Selection of Device Combination

Table III shows the accuracy of the different combinations
of the devices. It is clear that either of the shoes solely
achieves good accuracy. We also see slight improvement by
the device combinations. To see the result in detail, we show
the confusion matrices of the right shoe and the combination
of the right shoe and the pocket in Fig.5. The improvement by
the combination is only 1.8%, however, we see the accuracy
of some classes (i.e. idle, bus, and train) increases 2 to 4%.
This result implies that the combination of multiple devices
can improve the robustness of the travel context estimation.
We note that the accuracy strongly depends on the data set.
For example, if some users experience train travels frequently,
the improvement by the combination becomes greater. From
the result, we use the combination of the right shoe and the
pocket in the following evaluation.
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TABLE III
COMBINATIONS OF DEVICES.

Attatched Part Accuracy
Right Shoe 86.967%
Left Shoe 84.155%

Pocket 85.5%
Bag 75.730%

Wrist 67.348%
Left Shoe & pocket 88.505%

Right Shoe & pocket 88.799%
All Sensors 89.294%

(a) Right shoe

(b) Right shoe and pocket

Fig. 5. Confusion matrices of right shoe and pocket.

E. Effect of Context Correction

In order to confirm the effect of the context correction
algorithm described in Section III-B4, we changed the number
M of windows for the majority voting. From the result shown
in Fig.6, we see the accuracy slightly increases as the number
of windows increases, reaching up to 92.4% at five windows
compared to 88.8% without the correction (i.e. zero window).
Therefore, we confirmed the context correction is helpful to
improve the accuracy although the impact is not large.

F. Energy Consumption

We measure energy consumption by using the prototype,
assuming the combination of the right shoe and the pocket. In

Fig. 6. Effect of context correction.

TABLE IV
TRANSMITTER ENERGY CONSUMPTION.

Component(Input Voltage) Average Power Consumption
Micro-controller(2.0V) 29.4µW
Accelerometer(2.0V) 3.0µW

Analog components [2] 0.25µW
Total 32.65µW

the design of the battery-less devices, we also need to consider
energy harvesting. Since we can expect sufficient amount of
harvested energy by the movement of users, we assume the
right shoe device as the central device. The pocket device also
harvests energy from the vibration. Photodiodes are also used
to harvest energy from lights during travel contexts without
user movement such as idle, bus, and train.

First, in order to measure the energy consumption at the
transmitter, we reproduced the operations of the pocket device.
The sampling rate of the accelerometer was set to 12.5 Hz.
When the accelerometer’s FIFO buffer becomes full (every
13.6 secs.), the micro-controller wakes up by interruption,
computes the results of DT nodes, and transmits them. The
measurement result of energy consumption at the pocket
device is shown in Table IV. Since the analog component is not
implemented on the prototype, we use its energy consumption
shown in Ref. [2]. The result indicates the energy consumption
of the micro-controller is the largest (29.4µW) because it
conducts various operations such as feature extraction, com-
putation, and data transmission.

Also, the energy consumption of the receiver (i.e. central
device) is shown in Table V. The receiver computes the output
of DT by combining the received data and its own sensor data
(pressure and acceleration) The energy consumption of the
receiver is 52.94µW as shown in Table V, which is greater
than the transmitter. This is because of the computation cost
of the DT output and the additional sensor.

To see the feasibility of our concept, we need to compare
the energy consumption with the harvested amount of energy.
For this purpose, typical amount of harvested energy in dif-
ferent harvesters is shown in Table VI. Piezoelectric materials
generate energy up to 1mW during walking by attaching
them into shoe insoles [16], [17]. Ref. [18] reports vibration
during walking and running can produce 100-800 µW while it
becomes 5 µW at idle time. Therefore, we can expect sufficient
amount of harvested energy during movement. On the other
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TABLE V
RECEIVER ENERGY CONSUMPTION.

Component(Input Voltage) Average Power Consumption
Micro-controller(2.0V) 43.8µW
Accelerometer(2.0V) 3.0µW

Barometer(2.0V) 5.6µW
Analog components [2] 0.54µW

Total 52.94µW

TABLE VI
REPORTED AMOUNT OF HARVESTED ENERGY

Energy Harvesting Type Harvested Energy Amount
Piezoelectric materials [16], [17] 1mW

Motion(Kinetic) Energy [18] 40-800µW
RF Energy [19] 1-100µW
Solar Cell [20] 15-20µW(1cm2,500lux)

hand, for stationary scenarios, we may rely on other sources
such as light and radio frequency (RF). Another option is
to store the energy in a super capacitor during movement
and use the stored energy later. According to Ref. [19], 100
µW is harvested at 6.3 km away from Tokyo Tower by RF.
Photodiodes of 1 cm2 produce 20 µW for a typical office
environment (500 lux) [20], meaning photodiodes of 4 cm2

are sufficient to operate our battery-less device.
From the above results and discussion, we confirmed the

feasibility of the cooperative battery-less devices.

V. CONCLUSION

In this paper, we investigated the feasibility of cooperative
battery-less wearable devices through the prototype imple-
mentation to enhance their performance. We also showed
the effectiveness of device cooperation for travel context
estimation through the experiment.

Currently, we are planning to investigate other applications
where device cooperation is more effective. Also, we will com-
bine the energy harvester to show the feasibility through real
experiments. The implementation of the ambient backscatter
is another part of our future work.
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