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Abstract—Smart Vehicles (SV) generally have on-board pro-
cessing, wireless communication and sensing capabilities. They
are useful for vehicular applications like autonomous driving
(AD) or in-vehicle augmented reality (AR). One way to enhance
the performance of these applications is by enabling SVs to
exchange messages and sensor readings with other nearby SVs.
However, due to the mobility and resource limitation of SVs, the
availability of sensing and processing resources of nearby SVs
and the communication links between SVs (V2V) are unreliable.
Thus, it is a challenge to develop efficient sensing and processing
schemes for SVs. We first propose a Markov decision processes
(MDP) based sensing and proposing framework for SVs. The
framework models the uncertainties and can be solved to obtain
an optimum sensing and processing policy. Second, we point out
that the spatial information required to obtain sensing policy,
needs an extremely big state space for representation, making
this framework unscalable. Thirdly, we propose separating the
sensor selection problem from the sensing and processing scheme
and explain how this simplifies the problem and makes it scalable.
We then propose a maximum flow minimum cost based sensor
selection heuristic. Finally, we compare the performance obtained
by applying our heuristic with that of our original MDP based
scheme. The results show that our heuristics performance is
nearly as good as the original scheme while also increasing
scalability.

Index Terms—Vehicular ad-hoc Networks; Autonomous Driv-
ing; Distributed sensing; Edge Computing; Markov decision
process; Policy iteration

I. INTRODUCTION

Vehicles today are increasingly being equipped with an ar-
ray of sensors, processing and communication capable devices
and have constant access to the Internet. This has resulted in a
new era of Smart Vehicles (SV). SVs can exchange messages
with other nearby SVs and sense the environment using its
sensors. This gives them the ability to cooperate and make
intelligent decisions for preventing accidents, congestion and
pollution.

Autonomous driving (AD) and in-vehicle augmented reality
(AR) information systems are two SV technologies that have
made a lot of progress in the past decade. The objective
in AR systems is to use technology to enhance the senses
of the driver. Traffic information may be obtained from the
internet or from the SVs own sensors. Once obtained, the
information is usually processed into a form more perceptible
to the driver and displayed appropriately. The goal of AD
is to make vehicles capable of functioning without a driver.
Cameras and light detection and ranging (LiDAR) sensors are
the most commonly used sensors in SVs for these applications

[1], [2]. Typically, the raw sensor data is passed to a classifier
for classification and motion detection. State of the art machine
learning models are computationally expensive. Several works
in literature have contributed towards developing small sized
accurate and energy efficient models [3], [4] for embedded
systems. The cloud-enabled vehicular networking paradigm
[5] incurs high latency.

In the case of in-vehicle AR the nearby objects can be
displayed to driver along with their motion and semantic
information, who then decides the vehicle’s trajectory. On
the other hand, in AD trajectory planning is also done
computationally. A typical trajectory planner [6] follows two
main steps, global trajectory planning and local trajectory
planning. The global trajectory is computed based on the initial
location, the final destination, and the map of the region. Local
trajectory planner computes slight deviations along the global
trajectory. Typically, the local trajectory planning algorithm
considers only the nearby objects within a predefined region
of interest (RoI). Naturally, the trajectory planner could make
a more informed decision if we increase the RoI. Sometimes
the field of view (FoV) of the sensors may be limited by
the presence of obstacles. This scenario is quite common in
case of vehicles, e.g. the FoV of the vehicles front camera
being blocked by the bus in front of the vehicle. However, we
note that a vehicle maybe able to sense a much larger RoI
with the help of the sensors of other nearby vehicles. V2V
communication technology can help in communicating sensor
data between vehicles.

This paper makes the following contribution. To the best of
our knowledge, our work is the first to propose a MDP based
framework that jointly considers sensing and processing in
vehicular networks (VN). Secondly, we propose a maximum
flow minimum cost based heuristic for making the framework
scalable. The rest of the paper is organized as follows. Section
II describes the system formulation. Section III presents our
MDP based framework and Section IV presents the proposed
heuristic. Section V states the simulation setting and results.
Section VI describes the related works and Section VII con-
cludes the paper.

II. SYSTEM AND PROBLEM FORMULATION

A. Considered Scenario

Figure 1 depicts the scenario. Node U represents the user
running the application. The largest possible square represents
the RoI of the user. Let this region be denoted by R. The
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Fig. 1. RoI of user and FoV of available sensors

performance of node U’s application depends on the quality
and coverage of sensing within R. A, B, C and D are some other
SVs (other nodes) within the wireless communication range
of U . The RoI is subdivided into smaller sub-regions. Let the
sub-regions be denoted by rk. In this work we assume that the
field of view (FoV) of a single sensor is one sub-region. The
shaded region around a node denotes the combined FoV of all
its sensors. The regions shaded red and green depict the FoV
of node U and the other nodes respectively. The blue region
shows an area that is within the FoV of senors of both nodes
U and C. Clearly, node U can sense a greater portion of the
RoI with the help of other nodes.

B. Sensing model

Sensor data utility depends on both the location of the sensor
and its data quality [7]. Here location refers to the FoV. Quality
may be measured based on the information content or some
other attribute e.g. frame rate or resolution of video from SV
cameras. We abstract sensor data quality of sensor j of node i
as a discrete variable qi

j ∈
{

0,1,2, ...,qmax
}

. qi
j = 0 means that

sensor j of node i is not sensing. The variable η i
j ∈ {0,1}

represents the processing decision. η i
j = 1 denotes that raw

data is sent from sensor j of SV i to the user SV, whereas
η i

j = 0 denotes that the data from sensor j of SV i will be
processed at SV i and only the result sent to the user SV.

C. Processing model

Semantic and motion segmentation of images involve linear
operations on the image pixels. We define a unit task as the
amount of computation required to process a sensor sample
whose qi

j = 1. Hence, the amount of computation required
to process a sensor sample with qi

j = k can be considered
equivalent to k dependent tasks. The processing model of SVs
have two components, the task queue and the processor. A SV
may receive raw sensor samples either from its own sensors
or from the sensors of neighbouring SVs. Upon arrival the
raw sensor samples are placed in the task queue. Assume that
the task queue can not store more than M tasks. We use mi

to represent the number of tasks at the beginning of a time
slot. If the qi

j of an arriving sensor sample is greater than
M−mi, then it is dropped. The on-board processor on SVs is
resource constrained and shared by several applications with

unpredictable demands. We model the processor’s capacity as
pi ∼ Poisson(λ i) to account for the unpredictable demands.
For simplicity, we assume λ i = λ ∀i.

D. Communication Model

A V2V link between SVs is a wireless communication link
and is affected by path loss, shadowing, fading and node
mobility. Let Ptr denote the transmission power and Pth the
receiver power threshold.

1) Probability of Link Existence: Let Prec denote the re-
ceived signal power at the receiver. As a consequence of
shadowing and fading, Prec at any given distance from the
transmitter is a random process. The quantity of interest is
P(Prec ≥ Pth|x). It denotes the probability that Prec ≥ Pth at a
distance x from the transmitter, i.e. it is the probability of link
existence at a distance x from the transmitter.

2) Effective transmission range: P(Prec > Pth|x) is mono-
tonically decreasing w.r.t. respect to x. We define the effective
transmission range of a transmitter, denoted by Re, to be the
distance from transmitter beyond which P(Prec > Pth|x)< 0.1.
Beyond Re we assume that P(Prec > Pth|x) = 0 [8].

E. Mobility model

1) Location state of neighbouring SVs: The location state
of SV i, denoted by li, is the sub-region where SV i is currently
located. Each sub-region is a square with side length SL. Let
xi and yi be the relative distance of SV i from user SV in the
X and Y direction (two perpendicular directions) respectively.
Then li = b jk, only if j = ceil( xi

SL
) and k = ceil( yi

SL
). Here both

−Re ≤ xi , yi ≤ Re.
2) Location State Transition Probabilities: Due to relative

motion of the SVs, the location state of each neighbouring SV
changes after each time interval. Pbrs

bi j
denotes the probability

of the location state transition from state bi j to state brs in one
time interval. We do not describe a detailed mobility model
here due to space constraint. We have briefly mentioned it in
Section V.

3) Probability of Link Existence for a location state:
P(Prec > Pth|x) at any point depends on the relative distance x
from the transmitter. For a given location state b jk, P(Prec >
Pth|x) must be averaged over the concerned region as done in
(1).

P jk
LE =

∫ j.SL

( j−1).SL

∫ k.SL

(k−1).SL

1
S2

L
.P(Prec > Pth|

√
x2 + y2) dxdy (1)

III. MDP BASED FRAMEWORK FOR SENSING AND
PROCESSING

A. State Space

The state space is defined as in (2). Here M = (m1, ...,mN)
and L = (l1, ..., lN) are vectors of the queue states and the
location states of all the neighbouring SVs respectively. mU

denotes the queue state of the user node.

S=
{

s = (M,L,mU )
}

(2)
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B. Action Space

The action space is defined as in (3). Q=
{

qi
j|∀ i,j

}
and η ={

η i
j|∀ i,j

}
are vectors of the decision variables. Let A(s)⊆A

denote the set of actions possible from state s. An action is
possible from a state if none of the SV queues overflow. These
conditions are stated concisely in (4).

A=
{

a = (Q,η)
}

(3)

(mU + ∑
j∈Se(U)

qU
j +

N

∑
k=1

∑
l∈Se(k)

η
k
l qk

l )≤M[
mi + ∑

j∈Se(i)
(1−η

i
j)q

i
j
]
≤M; ∀i ∈ {1,2, ...,N}

(4)

C. State Transition Probabilities

Here we calculate the probability that the system transits
from a state s = (M,L,mU ) to a state s′ = (M′,L′,m′U )
after taking an action a = (Q,η). Given s, s′ and a the
number of tasks processed by the user node U is xU =
(mU + ∑ j∈Se(U) qU

j + ∑
N
k=1 ∑l∈Se(k) ηk

l qk
l − m′U ) and by any

other neighbouring node i is xi = (mi +∑ j∈Se(i)(1−η i
j)q

i
j −

m′i). Since pi ∼ Poisson(λ ), the probability that x j tasks are
processed by a node j during one period is

f (x j,λ ) = (λ )x j
.
e−λ

x j!
, x j > 0 (5)

Due to the independence of the number of tasks processed
by each node we have:

P(M′,m′u|s,a) = f (xU ,λU ). ∏
j∈{1,2,...,N}

f (x j,λ j) (6)

Furthermore, the mobility of a node is independent of
the mobility of other nodes. Therefore, we can write the
probability of transition of L to L′ as:

P(L′|s,a) = ∏
j∈{1,2,...,N}

Pl′i
li (7)

Therefore, the overall transition probability from state s to
s′ given action a ∈ A(s) can be written as follows

P(s′|s,a) = P(M′,m′u|s,a).P(L′|s,a) (8)

D. Reward function

The overall reward given a state s and action a ∈ A(s),
denoted by R(s,a), is composed of the application utility and
the costs involved.

1) Application Utility: Our application utility function,
denoted by U(s,a), is as given in (9). Here u(qi

j, l
i) denotes

the data utility drawn from sensor j of node i after being
processed. We assume that the utility drawn from a sensor
sample is inversely proportional to the time spent since its
arrival. f U

De(s,a) and fDe(s,a, i) in (9) account for this. No
utility is drawn if the sensor data is lost during communication.

The first term within the double summation in the expression
for U(s,a) in (9), calculates the utility when η i

j = 1. C and
I( ) denote the channel capacity and the identity function
respectively. It is clear that ψ i

j in (9) will be positive only
when the size of raw sensor data from sensor j of node i (X i

j)
is less than the effective channel capacity. The second term
within the double summation in the expression for U(s,a) in
(9) calculates the utility when η i

j = 0, i.e. the processed result
is sent to user over cellular network.

U(s,a) = α.
N

∑
i=1

∑
j∈S(i)

u(qi
j, l

i)
[
η

i
j.I
(

ψ
i
j

)
. f U

De(s,a)

+(1−η
i
j). fDe(s,a, i)

]
ψ

i
j =C.∆t.Pli

LE −X i
j

f U
De(s,a) =

λU

1+mU + 1
2 .
[

∑
N
i=1 ∑ j∈Se(U) η i

jq
i
j +∑ j∈Se(U) qi

j

]
fDe(s,a, i) =

λ i

1+mi +∑ j∈Se(i)(1−η i
j)q

i
j

(9)
2) Cost Functions: The user incurs cost due to energy

consumption, incentives given to user etc. Let C(s,a) denote
this cost. We do not choose a particular C(s,a) at the moment.
We define another function Pl(s,a). We let Pl(s,a) = −∞ if
two sensors with the same FoVs have non-zero qi

j’s. In all
other cases Pl(s,a) = 0. Now putting both the parts together
we define the reward function R(s,a) in Equation (10).

R(s,a) =U(s,a)+Pl(s,a)−C(s,a) (10)

After making suitable choices for the unspecified functions,
the above MDP based framework can be solved using either
value or policy iteration for obtaining an optimum sensing and
processing policy for SVs.

IV. MAXIMUM FLOW MINIMUM COST BASED SENSOR
SELECTION APPROACH

The MDP based framework jointly selects the optimum qi
j

and η i
j. However, the dimensionality of the state space is very

high. Let Nsr denote the total number of sub-regions within the
RoI. Then the dimensionality of the state space is MN+1.NN

sr .
Clearly, the framework does not scale well with Nsr. In this
section we propose a heuristic with a goal of avoiding these
problems.

li is only required for computing u(qi
j, l

i) and Pl(s,a). P jk
LE

depends is on
√

x2 + y2, i.e. relative distance, rather than on
(x,y). To make our state space independent of L we make two
adjustments. Firstly, we assume that u(qi

j, l
i) is of the form

u(qi
j, l

i) = uq(qi
j).ul(li). Secondly, we remove Pl(s,a) from

our framework, but ensure that no two sensors with qi
j 6= 0

have the same FoV.
1) Probability of Link Existence for relative distance states:

Just like location states, we can partition the relative distance
between two SVs into K quantized states of width ω = Re

K . The
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average probability of link existence for a distance state is as
given in (11). Using this our framework will be independent
of L.

Pi
LE =

∫ i.ω

(i−1).ω

1
ω
.P(Prec > Pth|x) dx (11)

2) Sensing Task Definition: Here we define the problem of
sensing the sub-regions within the RoI as a collection of tasks.
We will refer to these tasks as TS. Each TS involves sensing
one sub-region. Thus, we can define them as in (12). Let NTa
denote the total number of sub-regions.

T x
S = {rl} ∀x st. rx ∈ R (12)

3) Cost of Sensing Tasks: ul(li) denotes the location based
value of a sensor whose location information is in li. We define
the location cost of task T x

S to be 1
ul(T x

S )
.

4) Worker Nodes Definition: The SVs within the wireless
communication range of the user can be considered as poten-
tial worker nodes. Equation (13) defines each SV within the
wireless communication range of the user as a worker node
wi. Here Ri = {rk, ..,rs} is a vector of FoVs of node i sensors.
Let Tmax denote the maximum number of sensors that can be
hired from any single neighbour. Nodes may use such limits
to control energy consumption.

wi = {Ri,Tmax} (13)

5) Allocating Sensing Tasks to Worker Nodes: In terms
of worker and task definitions in (13) and (12), selecting
the sensors for each S(i) is equivalent to assigning those
sensors the task of sensing their own FoVs. It is just like
mapping a set of tasks to worker resources, the worker being
the neighbouring SVs and their sensors being the worker
resources. We must also ensure that no two selected sensors
have the same FoV.

6) Maximum Number of Selected Sensors: Typically, the
user node does not prefer paying more than a certain amount
of incentive per time step. Let κ represents the sensing
cost per time slot when qi

j = 1. Ignoring the processing and
communication costs, the minimum cost to use the selected
sensors will be κ.∑N

i=1 |S(i)|. This justifies the need for a
maximum limit on the number of selected sensors.

7) Reduction to the Minimum Cost Maximum Flow Prob-
lem:

Definition 1. (Maximum Task Assignment (MTA)). Let |An|
be the number of tasks that the user wants to process during
time slot tn. The MTA is the process of assigning tasks to the
workers during tn, such that the number of assigned tasks is
maximized, while still being less than or equal to |An|.

Definition 2. (Minimum Cost Maximum Task Assignment
(MCMTA)). The MCMTA is the process of assigning tasks
to worker nodes during one time slot, such that the number
of tasks assigned is equal to the number of tasks assigned
by MTA, while the location cost of the assigned tasks i.e.
∑

N
i=1 ∑ j∈S(i)

1
ul(li j)

is minimized.

We know from Definition 2 that that the solution of
MCMTA depends on the solution of MTA. It turns out that
MTA and MCMTA are jointly reducible to the minimum cost
maximum flow problem. We prove this Theorem 1.

Theorem 1. MTA and MCMTA are jointly reducible to the
minimum cost maximum flow problem.

Proof. At any time slot let W = {w1,w2, ..} be the set of
workers and T = {T 1

S ,T
2

S , ...,T
NTa

S } be the set of tasks. Let
G = (V,E) be the flow network graph with V as the set
of vertices, and E as the set of edges. The set V contains
(|W |+NTa + 3) vertices. Each worker w j maps to a vertex
v1+ j. Each task t j maps to a vertex v1+|W |+ j . We create a
new source vertex labeled as v0, another new vertex labelled
v1 and a new destination vertex labeled as v|W |+NTa+2.

The set E contains |W |+∑
|W |
i=1 |Ri|+ |T |+ 1 edges. Recall

that Ri is the vector of the FoV of worker i sensors. There
are |W | edges connecting v1 to v1+ j∀ j ∈ {1,2, .., |W |}. For a
given edge connecting v1 to v1+ j∀ j ∈ {1,2, .., |W |}, we set
the capacity to Tmax since a maximum of Tmax sensors can
be hired from one worker node. There are also NTa edges
connecting v1+|W |+ j∀ j ∈ {1,2, ...,NTa} to v|W |+NTa+2. We set
the capacity of each of these edges to 1, since each task has
to be assigned to at most one worker. Further, there are |R j|
edges from each vertex v1+ j to the corresponding vertices
v1+|W |+i∀i s.t. T i

S ∈ R j. For each of these edges we set the
cost to dT i

S
and the capacity to 1. Recall that T i

S represents
the sensing sub-region of sensing task i and dri denotes the
distance between the user node and the center of sub-region ri.
Lastly, we set the capacity of the edge between vertices v0 and
v1 to |An|, the number of tasks that the user wants to process
during the concerned time slot. All edges with unspecified cost
have a default cost value of 0. It is easy to see that solving the
maximum flow minimum cost problem for this flow network
graph is equivalent to assigning tasks according to MTA and
MCMTA.

Figures 2a and 2b show an example scenario and its reduc-
tion to a flow network graph respectively. The RoI consists of
9 sub-regions, each labelled with a number in the lower left
hand corner. The big square represents the user node. The big
upper and lower triangles represent two worker nodes. The
small upper and lower triangles in the upper-right and lower-
right corners of certain sub-regions represent the fact that the
respective worker node has this sub-region as the FoV of one
of its sensors. Let c(vi,v j) and co(vi,v j) denote the capacity
and cost of the edge joining vertices vi and v j respectively.
Further, let |An| = 3 and Tmax = 2 for the given scenario.
Then we set c(v0,v1) = 3, c(v1,v2) = 2 and c(v1,v3) = 2. Also
from Theorem 1, c(v2,vx) = 1 ∀x ∈ {4,6}, c(v3,vy) = 1 ∀y ∈
{6,9,11} and c(vz,v13) = 1 ∀z ∈ {4,5,6,7,8,9,10,11,12}.
Also co(vk,v13) = ul(rk). After reduction to the minimum cost
maximum flow problem MTA and MCMTA can be solved
using any of the standard techniques. We have used the Ford-
Fulkerson algorithm followed by linear programming.

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

690



TABLE I
PARAMETER SETTING

Parameter Value
Number of neighbouring SVs (N) {2,3,4}
Maximum queue size of user (MU

max) 6
Maximum queue size of neighbouring SVs
(Mmax)

3

Number of distance states (K) 3
Mean number of tasks processed by user per time
slot (λU )

2

Mean number of tasks processed by other SVs
per time slot (λ i)

1

Maximum sensor data quality level (qmax) 2
Application utility function constant (α) 10

8) Choosing S(i): Sensor j of node i must be included in
S(i) if there is a flow on the edge between vertex v1+i and
v1+|W |+β i

j
, where β i

j denotes the FoV of sensor j of node i.
9) Choosing |An|: |An| was defined in Definition 1 as the

number of tasks that the user wants to process during a time
slot tn. Our approach for finding the optimum value of |An| is
to consider each value from 0 to min(Nmax

Se ),NTa. In each case
we compute S(i) ∀i∈ {1,2, ...,N} and evaluate V (s). Then we
choose the value for which V (s) is minimum.

Since this approach involves both the maximum flow mini-
mum cost based heuristic for sensor selection and the relative
distance state based MDP framework, we will refer to this as
the MDPH framework.

V. SIMULATION SETTING, RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of our initial
MDP framework versus the MDPH framework. We present
the parameter values and the performance metrics used in our
simulations and a brief discussion of the results.

A. Simulation Setting

Table I summarizes the values of the parameters used in
our simulation. During simulation instance, the user and the
neighbouring SVs move independently in a square area of size
500m×500m according to the Semi-Markov Smooth mobility
model developed in [9]. The simulation was run for 106 time
steps. We compare the performance of the policy obtained
from the MDP framework to the policy obtained from the
MDPH framework.

B. Performance Metrics

In each time slot, during the entire run of the simulation, a
state and action pair will be obtained depending on the policy
used. We define the mean reward ratio (MRR) as the average of
the ratio of rewards from MDPH and MDP frameworks, during
the entire run of the simulation. Mathematically it can be
defined as in equation (14). A higher value of MRR indicates

that the MDPH framework has achieved a performance close
to that of the MDP framework.

MRR =
1
T

T

∑
i=1

Rt
H(s,a)

Rt(s,a)
(14)

Here Rt
H(s,a) and Rt(s,a) denote the rewards from the

MDPH and the MDP frameworks respectively. T denotes the
total duration of the simulation in terms of time steps.

C. Results and Discussions

We vary V̄ , σψdb and N, and plot the values of MRR defined
in Section V-B, in each case. V̄ is the average target speed
in the SMS mobility model and σψdb reprents the standard
deviation (in db) of the path loss due to fading. Figures 2c,
2d and 2e plot the MRR versus V̄ , σψdb and N respectively.
Firstly, we observe that MRR decreases with an increase in
V̄ , σψdb and N. Before explaining this obsevation, we note
that the MDP mainly models the uncertainty introduced by
the V2V links, the available CPU speeds/queue space and
node mobility. For a static network with infinite queue spaces
(with all these uncertainties absent), the MDPH framework
would perform exactly the same as the MDP framework. The
MDP framework is likely to perform better in situations of
higher uncertainty as it has more information to model this
uncertainty compared to the MDPH framework. This is exactly
what we observe in Figures 2c and 2d. With an increase in
V̄ and σψdb the uncertainty due to node mobility and the
V2V links respectively, increases. Thus, the MDP framework
performs better and MRR drops. Figure 2f plots the MRR
for two different choices of cost function used in the network
flow graph. The curve named Ds plots the MRR of the MDPH
framework with network flow graph cost function of 1

ul(li)
,

whereas the curve named Dqs plots the MRR for the MDPH
framework with network flow graph cost function of mi

ul(li)
.

In the case of Dps the queue state information is built into
the cost function. Therefore, there is a slight improvement in
performance.

VI. RELATED WORKS

[10] proposes a quality of information (QoI) aware coopera-
tive sensing scheme for VSNs. It considers a V2I scenario and
is centralized. [11] proposes a reinforcement learning based
trust mechanism and [12] proposes a deep reinforcement learn-
ing (DRL) based optimal sub-channel selection mechanism for
a V2I scenario. Incorporating trust and sub-channel selection
in our work will be interesting.

Cloud-enabled vehicular networks [5], mobile-edge comput-
ing (MEC) based offloading for vehicular networks [13] and
vehicular fog computing (VFC) [14] are some paradigms pro-
posed to overcome the resource limitation of SVs. However,
the optimal resource allocation schemes were not considered.
Some works in MANETs [15] have considered the use of
MDPs for task offloading, but our work considers both sensing
and task offloading jointly.
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(a) An example scenario. (b) Flow Network Graph. (c) Mean Reward Ratio vs Average Target
Speed.

(d) Mean Reward Ratio vs σψdb . (e) Mean Reward Ratio vs Number of Nodes. (f) Mean Reward Ratio of the Ds and Dqs
schemes vs Average Target Speed.

Fig. 2. Performance of MDP based scheme.

VII. CONCLUSION AND FUTURE WORK

This paper presents a MDP based sensing and processing
framework for VNs. The utility measure of a sensor requires
information regarding its FoV. Hence, the state space must
contain 2D location information and the framework does
not scale well. We propose a maximum flow minimum cost
based heuristic to convert the 2D location state to 1D relative
distance state, making the framework scalable. Simulations
show that the heuristic can obtain comparable performance.
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