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Abstract—Animals navigate through their ways in various 

scales ranging from centimeters to thousands of kilometers.  

How does the brain realize such spatial navigation? Several lines 

of evidence have suggested that the hippocampal place cell 

activity in the brain has a potential to answer the question. 

Although statistical machine learning plays critical roles on 

precisely deciphering the nature of the place cell activity, some 

technical issues remain unsolved since the ground truth is 

missing. By virtue of progressive efforts together with the 

advance on machine learning, methodologies for tracking and 

predicting navigational behaviors have been improved. Here we 

review the popular methodologies based on statistical machine 

learning that track the animal behavior from images and predict 

it from place cell activity, and discuss about what the next phase 

of the analysis tools is to deeply understand the neuronal 

underpinning of spatial navigation. 
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I. INTRODUCTION 

Spatial navigation including homing, migration, foraging 
and exploring is considered a common behavior widely 
observed across several species. In the field of neuroscience, 
to elucidate the neuronal underpinning of spatial navigation, 
the relationship between animal’s trajectory and neuronal 
activity have been investigated. For instance, it is well known 
that neurons maximally firing at a specific location, called 
place cell [1], were discovered according to the procedure. In 
addition, the damage of the hippocampus in the brain leads to 
severe dysfunction on spatial navigational ability in animals 
including humans [2]. The hippocampus is therefore thought 
to be critically involved in spatial navigation. 

How has the relationship between the place cell activity 
and animal’s location been examined in practice? First, 
animal’s behaviors were captured from a video camera 
mounted on the ceil of an experimental room. During the 
experiment, a few high visibility markers were attached on the 
animal’s head to easily track the head’s location and direction 
from the video image sequences. Second, the position of the 
markers were detected and used for reconstructing the 
animal’s trajectory. Third, hippocampal neuronal activity was 
simultaneously recorded from extracellular electrodes. The 
timing between the trajectory and neuronal activity was 
synchronized through a common digital signal. Finally, the 
spatial correlation between neuronal activity and the animal’s 
location was examined.  

In the analyses, there are some technical issues. For the 
tracking, the markers hinder animal’s natural behavior. 
Therefore, markerless tracking software showing near human-

level performance is anticipated. For the prediction, neuronal 
decoder [3] is widely used.  

It is possible that together with the advances on machine 
learning, their performance will be improved especially in 
difficult situation. Here we review the recent advances and 
technical issues on the analyses based on statistical machine 
learning, and discuss about their future perspective.  

II. TRACKING THE NAVIGATIONAL BEHAVIOR FROM IMAGES 

A. Tracking the animal’s head location with markers 

The initial step for examining the place specificity of 
firings of neurons in the brain is to observe where and when 
the animal ran. Neuroscientists focus on the head’s location 
and direction because animals are thought to recognize the 
environment in a head centered coordination system. 
Normally, to easily track the head location, high visibility 
markers such as LED were attached on the head. Those 
makers are easily detectable using simple image processing 
functions including thresholding at an arbitrary value even in 
a selected color channel. However, the markers could affect 
the animal behavior; for example, the reflected light from the 
LED could be visual cues dynamically changing according to 
the animal’s head movement; those light would affect the 
place cell firings as the previous reports suggested that the 
receptive field covered by a place cell firings can be remapped 
in response with the visual cues [4]. 

B. Tracking using conventional image processing 

Image processing highly customized to each animals could 
track the head location. However, some parameters for the 
processing need to be optimized every experimental 
conditions by a human operator. Nevertheless neuroscientists 
are typically not familiar with image processing, the 
expertized knowledge is often required for those 
optimizations. Thus, the simple object-based tracking without 
sophisticated image processing has been widely used in the 
place cell studies. 

C. Markerless posture tracking based on deep learning 

Recently, machine vision based on deep learning shows an 
outstanding performance on the object detection. In the object 
detection area, the performance is going away beyond the 
human expertise. However, neuroscientists have not fully 
gained the great benefit from the remarkable performance 
powered by deep learning. The primary reason is that any 
cutting-edge software for helping to understand the questions 
in the field of neuroscience using the deep learning have not 
been developed yet. The second reason is that almost all of 
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experimental neuroscientists are not familiar with the state-of-
the-art techniques of the machine learning. 

A novel open source software recently developed for 
marker-less posture estimation based on deep learning, called 
DeepLabCut [5], may be a game-changer. Typically, a huge 
amount of labelled images are a prerequisite for training deep 
convolution networks. The DeepLabCut overcame the 
problem using transfer learning. It uses Resnet-50 [6], a deep 
residual network with 50 layers trained from ImageNet as a 
pretrained initial network. Thus, it achieved that using only 
200 labelled images randomly selected, it is capable of 
accurately tracking the target body joints such as neck, head, 
and leg. It can also track the posture of multiple objects by 
virture of pair-wise probability maps inspired from the 
DeeperCut [7], a multi-person position estimation model. 
Because the outstanding performance on the object detection, 
post-processing such as Kalman filter frequently used in 
machine vision is not necessarily required. 

Indeed, using the DeepLabCut, we could accurately 
estimate postures from several species including rat, mouse, 
seabird and salmonid fish. Figure 1 demonstrates an example 
of head, center of body and tail of a rat tracked using the 
DeepLabCut.  

Fig. 1. Nine example images of  the head (purple), center of body (blue) 

and tail (pink) of a rat tracked using the DeepLabCut. 

D. Beyond the DeepLabCut 

Whereas the DeepLabCut must be the first candidate for 
tracking the animal behavior, there is still room for 
improvement as the developer mentioned in the article. 

DeepLabCut based on the deep convolution network for 
image detection does not consider the temporal dynamics of 
the posture. It is well known that Kalman filter, conventional 
image processing utilizes transition probability between pre 
and post images in the video. The temporal information must 

help to track the animal behavior under situations where 
objects were occasionally hidden for a short period. In the 
field of deep learning, long short term memory (LSTM) can 
accurately capture such temporal sequences at a high precision. 
DeepLabCut in conjunction with LSTM would be the next 
phase of evolution on tracking the navigational behavior. 

III. PREDICTING THE NAVIGATIONAL BEHAVIOR 

How does the brain realize flexible spatial navigational 
behavior? The place cell in the hippocampus and its relatives 
including head-direction cell [8], grid cell [9], border cell and 
speed cell [10] in the parahippocampal areas and entorhinal 
cortex are thought to play important roles in the spatial 
navigation because they are the key components for path-
integration [11]. In addition, the place cell is an excitatory 
pyramidal neuron in the hippocampus, which fires only at a 
specific location in an environment. Thus, provided that we 
are capable of simultaneously monitoring over 100 place cells, 
the animal’s running trajectory can be precisely decoded from 
the place cell activity sequences using statistical machine 
learning [12]. 

A. Bayesain decoder 

One of the most popular methodologies for predicting 
animal’s trajectory from the place cell activity is called 
Bayesian decoder [3]. It is an algorithm that reconstructs the 
position of the animal from the place cell activities by 
calculating 𝑃(𝒙|𝒏), the conditional probability for the animal 
to be at discrete position 𝒙 given by the number of spikes, 𝒏. 
Since the 𝑃(𝒙|𝒏) cannot be directly calculated, it must be 
estimated using probabilities derived from experimentally 
measurable values according to the Bayes theorem as show in 
(1). 

P(x|n)= 
P(n|x)P(x)

P(n)
(1) 

where 𝒙 = (𝑥, 𝑦), 𝒏 = (𝑛1, 𝑛2, ⋯ , 𝑛𝑁) denote the position of 

the animal and the number of spikes fired by recorded cells 

within a time window, respectively. 𝑃(𝒙)  represents a 

probability that the animal occupied a position 𝒙  in the 

environment, called occupancy map. 𝑃(𝒏)  indicates the 

firing rate. 

To evaluate the key probability, 𝑃(𝒏|𝒙), we assume that 

the spikes have a Poisson distribution and that place cells are 

statistically independent each other. Then, the final formula 

is described in (2). 

P(x|n)=C(τ,n)P(x) (∏ fi(x)
ni

N

i=1

) exp(-τ∑ fi(x)

N

i=1

) (2)  

where 𝜏  denotes the length of a time window, 𝐶(𝜏, 𝒏) 
represents a normalization constant that depend on the time 

window, 𝜏  and the number of spikes, 𝒏 , 𝑓𝑖(𝒙)  represents 

firing rates of place cells at the position 𝒙, and 𝑛𝑖 represents 

the number of spikes of cell 𝑖. Since the probability 𝑃(𝒙|𝒏) 
has a two-dimensional distribution, the reconstructed position 

is defined as a peak of the probability map. Similar to the 

DeepLabCut, the reconstructed positions can be improved 

with history of past positions using Kalman filter. However, 

the place cell community does not recommend to use it 

because it is possible that such artificial smoothing distorts 

the results obtained from the nature of place cell activity. 
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B. Animal’s trajectory predicted by the Bayesian decoder 

The memoryless Bayesian decoder is widely used to 
demonstrate and evaluate the relationship between spatial 
navigational behavior and hippocampal place cell activity. For 
instance, some sequential activity patterns of place cell are 
reactivated at a ten-fold compression scale during slow-wave 
sleeps, one of the stages of sleep [13], and a brief immobility 
period [14]. Since the decoder enables us to visually assess the 
reactivated spatial trajectory patterns encoded by a place cell 
activity sequence, it helps us to understand the neuronal 
mechanism of spatial navigation [15] (Fig. 2).  

Fig. 2. A procedure for predicting animal’s trajectory using the Bayesian 
decoder. A, Candidate reactivation were defined as periods when the 

smoothed (Gaussian kernel; SD: 10 ms) population activity (middle) was 

higher than the mean (black dotted line) and the peak was above the defined 
threshold (mean + 3SD, green dotted line). During candidate replays, the 

local field potential (LFP) (top) clearly showed sharpwave ripples. Location 

were estimated based on the spiking activity (bottom, spike raster) enclosed 
by the red lines in the reactivation. B, The memoryless Bayesian decoder was 

used to decode the posterior probability of the linearized location from 

spiking activity and journey-specific place maps, C, for every time window. 

Adapted from Takahashi, eLife, 2015 [15]. 

C. Beyond the Bayesian decoder 

The reactivation of place cell activity sequences is 
temporally compressed. Although the Bayesian decoder 
employs a fixed time window, the compression scale might be 
dynamically modulated in a natural situation. To address the 
issue, template matching have been utilized [16]. Dynamic 
time warping—a sort of template matching—may handle such 
dynamic changes of the temporal compression rate. However, 
the computation load is heavy. The combination of the 
Bayesian decoder and the template matching or hidden 
Markov models may be a solution. 

IV. CONCLUDING REMARKS 

In summary, we reviewed the significance and technical 

issues of methodologies widely used in the field of systems 

neuroscience for tracking and predicting the navigational 

behaviors based on statistical machine learning.  

Besides, machine learning also plays an important role on 

different analysis stages. For instance, a preprocessing called 

spike sorting that sorts single neuronal activity from multiple 

ones monitored from extracellular recordings, is degraded by 

spike overlapping and non-stationary shape. Whereas several 

spike sorting algorithms have been developed to overcome 

the issues using independent component analysis [17], EM 

algorithm [18], a standard tool has not been established yet 

[19]. 

We believe that cutting-edge technologies based on state-

of-the-art statistical machine learning will address the issues 

in the near future. To accomplish that, data scientist and 

neuroscientist must work together toward a common goal. 
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