CASPer'19 - 6th International Workshop on Crowd Assisted Sensing, PERvasive Systems and Communications

Exploring data forwarding with Bluetooth for
participatory crowd monitoring

Christin Groba
Chair of Computer Networks
Technische Universitdt Dresden
Dresden, Germany
Christin.Groba @tu-dresden.de

Abstract—Participatory crowd monitoring estimates the size
and dynamics of a crowd based on position data shared by
people in the crowd. At large-scale events, these small but
frequent uploads compete for bandwidth with the crowd’s social
networking activities causing transmission errors and long delays.
Forwarding collected data within a peer-to-peer network allows
for bundling that data and assigning the upload task to a few
selected peers. On modern phones, however, peer discovery and
networking is challenging due to tight restrictions of mobile
operating systems. This paper shows how the announcement of
internal state transitions via Bluetooth enables peers to align their
operations and to accommodate for issues such as bandwidth
restrictions, inexact timing, limited background activity, and idle
times. Experiments on Android phones show that already for a
small set of phones the proposed protocol works reliably and
significantly reduces the use of the networking infrastructure.
With the data delay and energy consumption in acceptable
bounds, the protocol presents a viable solution for when network
overload puts crowd monitoring data at risk of not being
delivered in a timely manner.

Index Terms—crowd monitoring, data bundling, peer-to-peer
forwarding, Bluetooth, Android

I. INTRODUCTION

Participatory crowd monitoring uses the sensing and net-
working capabilities of modern phones to collect data about
a crowd of people. Participants within the crowd agree to run
an app that, for example, anonymously shares their position.
Imagine such a monitoring campaign at a large music festival.
Analyzing shared position data already during the event allows
for creating a live heat map that color-codes the popularity
of different stages and concession stands. With exclusive
access to that map, participants may adjust their visit based
on their level of preferred crowdedness. Event organizers,
on the other hand, may use the map to efficiently deploy
emergency response personnel and other critical resources.
Typically, such campaigns run in a way where each participant
uploads position data to remote campaign servers directly.
However, at large-scale events the demand for networking
bandwidth increases rapidly while existing infrastructure is
designed for the average case that does not accommodate
for large crowds. With the music festival taking place in
a rural area, for example, and visitors immediately sharing

This research is funded by the German Research Foundation (DFG) under
GR 4517/1-1.

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 71

Thomas Springer
Chair of Computer Networks
Technische Universitit Dresden
Dresden, Germany
Thomas.Springer @tu-dresden.de

their festival experience on social platforms, Internet access
becomes slow and at times even impossible [1]. The updates
of location data then compete for bandwidth just like any other
traffic and may not arrive soon enough for the live visualization
of visitor densities.

The upload of bundled data may help to mitigate the stress
on the networking infrastructure. For this, phones commu-
nicate peer-to-peer (p2p) via an alternative communication
channel like Bluetooth to forward data and to select hubs
among themselves that upload bundled data to the campaign
server. However, such a concept is challenging to implement
on modern phones due to restrictions set by mobile operating
systems (mobile OS) that limit background activities with re-
spect to when and for how long they are executed and access to
networking resources that require explicit user authorization.

This paper presents a state-based protocol for bundling
crowd monitoring data, forwarded with Bluetooth, to reduce
their use of the networking infrastructure. The approach is
grounded in work related to collaborative sensing and device-
to-device communication (Section II). It complements existing
research by studying the protocol’s deployment and perfor-
mance on modern phones in a real-world operating environ-
ment. Challenged by that environment, the paper explores the
restrictions of mobile OS that prevents from a straight forward
implementation of a forwarding protocol with Bluetooth. It
explains how the protocol is designed to handle the challenges
related to a phone’s limited background activity, bandwidth
restrictions, inexact timing, and idle times (Section III). Key
to the proposed solution is the announcement of internal state
transitions that enables peers to coordinate their discovery
and networking actions. This way the protocol ensures that if
nearby phones currently run the monitoring app, they exchange
and upload the corresponding data successfully. Experiments
with up to five Android phones quantify the protocol’s effec-
tiveness, reliability, and overhead (Section IV). In addition,
first insights from a field trial regarding user acceptance are
included. The paper ends with a discussion of the protocol’s
performance results (Section V).

The contribution of this paper is its hands-on approach to
bundling and data forwarding among modern phones, high-
lighting how ever tighter restrictions of mobile OS impact the
design of protocols for participatory crowd monitoring.

CASPer'19 - 6th International Workshop on Crowd Assisted Sensing, PERvasive Systems and Communications

II. RELATED WORK

The problem of coordinating modern phones in a p2p
manner has been studied in the area of collaborative sensing
and device-to-device communication.

Collaborative sensing explores how nearby devices may
cooperate on energy-intensive tasks like GPS-based position-
ing or audio recording. The challenge is to strike a balance
between the energy required for sensing and the availability
and accuracy of the measurements. One way to achieve this is
by comparing samples from different sources and deactivating
those devices that provide redundant data [2]. In the example
of GPS-based positioning, some devices sample and share their
measurements while other devices do not sample themselves.
They rather wait and calculate their position based on their
peers’ measurements [3]. Solutions with a central entity to
make such a decision [2], [3] have full system view to run the
selection algorithm. However, they assume stable connectivity
between the central entity and the devices. This may not
always be the case in crowded scenarios.

A distributed approach [4] lets devices broadcast their mea-
surement, energy budget, and time of next sensing. This way
co-located devices decide whether to wait or to sample and
share. This solution is applicable, if devices have full control
over when to execute an action. However, mobile OS restrict
this ability, in particular for background activities. Rather
than exact execution times, they only allow for specifying
execution windows. This introduces uncertainty during the
decision making.

Another distributed solution [5] lets mobile nodes decide
for themselves whether to become a hub for collecting sensor
data from peers. A stochastic algorithm makes this decision in
intervals and ensures a fair and effective allocation. It assumes
that all nodes have the same understanding of when an interval
starts and ends. This is not the case for modern phones which
operate on individual time windows. As a result, a node may
decide to resign from its role as a hub while peers still send
data to that node.

The protocol in this paper addresses this inexact timing
issue and enables phones to align their actions even when they
operate in different protocol states. Further, the experiments
run on Android phones that actually exchange sensor data via
their Bluetooth interface and allow for performance tests under
real-world conditions. This goes beyond simulation-based [5]
and trace-driven evaluations [4].

Device-to-device communication among mobile phones re-
quires coordination to select the device that manages a group
of peers and relays their messages. In WiFi Direct this role of
a group owner needs to be dynamically re-assigned to share
the cost of increased energy consumption among all group
members. A study [6] found that among different group owner
selection algorithms, random self-selection is most suitable for
large and highly dynamic networks. In intervals a group owner
disconnects from its members and waits for invitations to
another group. If those do not arrive, the former group owner
re-assumes its role and sends out invitations to its own group.

72

For inter-group communication, so-called traveling phones
autonomously disconnect from their current group and connect
to another group to disseminate content between groups [7].
The decision whether to become a traveling node is also based
on self-selection and a stochastic component that takes group
cardinality into account.

In WLAN tethering, some devices change into access point
(AP) mode and relay messages while other devices scan for
access points and connect as clients. However, phones in the
same mode are not aware of each other and some intelligent
switching between modes is required. One way is to achieve
this is to predict the dissemination process and maximize the
probability of two random phones to connect [8]. Another way
is to randomize the time a phone remains in a particular mode
[9]. Replacing the required but energy-intensive Wifi scans
with a discovery based on Bluetooth Low Energy does not
only reduce the energy consmuption of the AP but also creates
larger groups with less redundant APs [10].

In this paper, phones compare the remaining battery level
of their peers to decide where to forward local sensor data.
This way the role of a hub that uploads all data rotates
naturally depending on the availability and characteristics of
the peers in vicinity. As for the communication among the
phones, the choice for classic Bluetooth is due to its wide-
spread availability on Android phones and its unrestricted use
in conjunction with regular Internet access. In comparison,
in WiFi Direct the support for simultaneous connections to
a group and a regular WiFi AP is optional. This means,
devices without that feature cannot use their regular Internet
connection while sharing data via WiFi Direct. With WLAN
tethering, on the other hand, a phone in AP mode drops
the connection to any regular WiFi AP and instead connects
to the cellular network. This may incur monetary cost and
discourages participation. Bluetooth Low Energy (BLE) is
another networking option and typically used for phones to
communicate with low energy peripherals like body sensors.
If phones want to communicate with each other, they need to
be discoverable like a peripheral. Support for peripheral mode,
however, depends on the firmware and varies even for newer
Android phones.

III. P2P DATA FORWARDING

The concept of p2p data forwarding is based on the fol-
lowing system setup. We assume a set of nodes representing
people with modern phones that run an app to participate in
a crowd monitoring campaign. They arbitrarily move around
while visiting an event, e.g., a fair or a music festival (Figure
1). Each node has a certain capacity to store a number of
position updates and can perform the following tasks:

« Discover: Updating the phone’s view of available peers
by periodically running a discovery,

o Accept: Accepting connection requests and storing posi-
tion data received from peers,

« Forward: Forwarding all data saved locally to a selected
peer, and

CASPer'19 - 6th International Workshop on Crowd Assisted Sensing, PERvasive Systems and Communications

Fig. 1. System setup

« Upload: Uploading data locally stored if a connection to
the crowd monitoring server is available.

Due to the density of devices we assume that only a subset of
all nodes is able to upload position data directly to the server
based on WiFi or cellular (marked as grey filled circles in
Figure 1) while all other nodes have to rely on data forwarding.

A. Restrictions by mobile OS

A set of restriction imposed by mobile OS have a significant
impact on the design of a forwarding protocol with Bluetooth.
The following requirements were collected during a set of
previous iterations of the presented protocol:

Limited background activity: Crowd monitoring requires
upload of position updates even if the user is not actively
interacting with the app. However, mobile OS save resources
and energy by limiting the execution of background processes.
As soon the user stops interacting with an app, the app goes
into the background mode, that is only long enough to run
some clean-up tasks, before the system inactivates the app.
An inactive app wakes up only few times an hour to run its
background processes with a short time window. This reduces
the availability of peers significantly.

Bandwidth restrictions: Conceptually, a phone may dis-
cover and establish connections to peers simultaneously. In
reality, however, these actions compete for bandwidth, slowing
down connection attempts and reducing the quality of existing
connections. Phones must therefore switch between either
discovering or accepting connection requests and forwarding
data. This implies that two phones cannot exchange data as
long

Inexact timing: Sensing campaigns define intervals as to
when data should be collected and forwarded but the mobile
OS batches background processes and prevents them from
running exactly at a scheduled time. This inexact timing
means that time-based schedules for coordinating discovery
and networking between peers are impractical as the app’s
control over when a task gets executed is limited.

Idle times: During idle times, which result from periodic
upload activities in the sensing campaign, the phone needs
to convey to its peers that it is not available for interaction
to conserve system resources. Turning off the beaconing that
enables peers to discover the phone, however, is not an option
since the user needs to manually authorize each such change.

73

B. Resulting requirements for protocol design

Conceptually, the identified tasks run in parallel but due to
the phone’s bandwidth restrictions discovery and networking
need to take separate phases. Due to the inexact timing
restriction switching between these phases should not rely on
exact timeouts. Further, two phones need to coordinate their
tasks since they cannot exchange data while they both run the
discovery. Therefore, random start-up times should be used in
the protocol, but with discovery taking time (for Bluetooth in
Android 12 seconds), the lower the interval for the protocol
to run, the more likely that discovery phases overlap.

Also, with limited background activity, the protocol needs
to ensure that if co-located phones happen to execute the
monitoring app at the same time (possibly as a background
process), they collectively work towards a successful data
exchange and upload. Finally, the protocol needs to convey
idle times in-between protocol runs for when the phone is
not available for accepting and forwarding monitoring data.
Changes to the phone’s discoverability requires the user’s
consent and cannot be requested on a regular basis without
annoying the user.

C. State-based protocol

A phone runs the protocol in intervals triggered by a
timeout. The protocol consists of a server-part and a client-part
which run simultaneously on the phone (cp. Figure 2).

The server-part starts in “discovering” state and waits for
the client-part to do the same (or to report being finished for
this interval). When this happens, both parts are synchronized
and ready to jointly run the discovery (1). If the client-
part prematurely cancels discovery, the server-part starts over
(2). As soon as the server-part detects a peer whose client-
part is discovering, it cancels local discovery and goes into
“accepting” since it anticipates the peer’s connection request
(3). Otherwise, discovery eventually times out and the server-
part finishes (4). Once the time for accepting connection
requests runs out, the server evaluates whether it has been
server long enough in this interval and finishes (5) or otherwise
gets ready to run discovery again (6).

The client-part, like the server-part, starts in “discovering”
and waits to run the joint discovery (7). If discovery gets
cancelled by the server-part, the client-part starts over (8). As
soon as it discovers a peer with an accepting server-part, it
cancels discovery and forwards all its data (9). If discovery
times out and no such peer has been discovered, the client-
part directly uploads its data to the remote campaign server
(10). If discovery times out and a peer with its server-part
in “discovering” state is around (11), the client-part evaluates
whether to run discovery again (12), since the peer is likely
to go to “accepting” state soon. If the client-part is unable
to forward or upload its data within a maximum number of
rounds, it finishes by saving its data locally and waiting for
the protocol to be triggered again (13).

The protocol achieves coordination between phones by
including the state of the server-part and the client-part in
the discovery beacons. This way a phone is aware of its

CASPer'19 - 6th International Workshop on Crowd Assisted Sensing, PERvasive Systems and Communications

Server-part

(2) client-part
cancelled discovery []
Y
(1) client-part is 'ﬁd;sicb\;eiriﬂw
> discovering (discovering ————»| startedy !
|| finished) [] (NG hs
(6) timeout && (3) discovering client found (4) timeout

serverRounds<=MAX [cancelDiscovery();
[serverRounds++]

1l

(5) timeout &&

i

serverRounds>MAX:

Client-part
(8) server-part

cancelled discovery []

A

> discovering

) \
(discovering —————»! discovery |

(7) server-part is |

\ started
- J

|| finished) []

(12) clientRounds<=MAX []

) (9) (accepting server found
(11) timeout && [cancelDiscovery();

discovering server found forwardData()])
[clientRounds++] 1

(10) (timeout && no server found
[uploadData()])

(13) clientRounds>MAX
[saveDataLocally()]

Fig. 2. Protocol to run on a phone. Bold-face states are visible to peers while
an italic-face state is only visible to the phone itself. State transitions read as
trigger(list of actions].

peers, can cancel discovery deliberately, and proceed with the
networking tasks. This also ensures, that phones that currently
run the protocol, interact. In particular, the client-part stays
active as long as discovery suggests that potential server peers
are around. The server-part, on the other hand, stays available
as long as it finds active clients. Staying active, however, is
configured to a maximum number of rounds to balance the
phone’s participation commitment with the depletion of its
local resources. In terms of conveying idle times, a phone
only interacts with peers whose relevant server or client part
is unfinished and ignores all other peers.

For selecting the destination, the phone compares the re-
maining battery level of the discovered peers including its own
and identifies the phone with the highest remaining level. If
on par, it selects the phone with the highest phone id. The
selected destination may be another peer or the phone itself. In
the former case, the phone forwards its data to the other peer.
In the latter case, the phone uploads its data to the campaign
server because among all its peers it is the one with the highest
remaining battery level. This partial order avoids forwarding

loops. Thresholds for a minimum number of data in the local
data pool or a maximum delay time are currently not part of the
protocol. Once data forwarding is finished, the phone discards
the connection. This is to adapt to the mobility of the phone
users and avoids failure due to stale connection information.

D. Implementation details

The choice of Bluetooth comes with three implications
on the implementation in Android: First, Bluetooth discovery
beacons as such are not configurable to transmit custom data.
As a workaround, the protocol edits the phone’s device name,
which is part of a beacon, to convey the remaining battery
level and the state of the client-part and the server-part.

Second, preliminary tests showed that peers are likely to
operate on stale state information, because beacons arrive
only after some delay at other peers. The protocol addresses
this issue by delaying the corresponding action after a phone
transitioned between states. This allows for state changes to
”sink-in” with its peers.

Third, secure connections to new Bluetooth devices require
manual pairing which is not viable in the context of mass
events where peers are numerous and change frequently. The
protocol uses insecure connections that do not require such
user authorization. This means, however, that data is clear
text and prone to eavesdropping. It requires security measures
on higher network layers similar to SSL where participants
encrypt and sign their data such that only the server is able
to decrypt each contribution. Such measures remain to be
implemented in the protocol.

IV. EXPERIMENTS

The goal of the experiments is to quantify the protocol’s
effectiveness, reliability, and overhead in comparison to a
non-cooperative baseline where each phone uploads its data
directly. Position data are sightings from a iBeacon which will
be part of an indoor positioning and crowd monitoring system
in future. The setup is static in that neither the beacon nor the
phones move and the phones stay in each others’ transmissions
range. To test the protocol, Wifi is disabled for all but one of
the phones. Started randomly, each phone repeatedly runs the
protocol or baseline over a measurement period of 30 minutes.
The phone triggers the next protocol run 10 to 30 seconds after
the previous run finished. An experiment is repeated at least
three times to calculate averages and to verify that observed
behavior is representative.

A. Network load

Evaluating the protocol’s effectiveness, Figure 3 depicts
the total number of uploads that co-located phones created
over the measurement period. For the baseline, this number
increases as each additional phone contributes its own number
of uploads which is on average 58 (£3) uploads. Each such
upload contains on average two kilobyte of data. For the
protocol, the number of uploads is much lower and decreases
towards an average of 10 (1) uploads for five phones. Then
the protocol-based uploads contain on average 43 Kilobyte

74

CASPer'19 - 6th International Workshop on Crowd Assisted Sensing, PERvasive Systems and Communications

300

250

200

Uploads

baseline

|] |
100 protocol

50

Numbe of phones

Fig. 3. The protocol reduces the total number of uploads.

of data. This shows that the protocol meets its objective and
reduces the strain on the Wifi network by collecting the bundle
of data via the p2p connections first.

B. P2P performance

To assess the protocol’s reliability, consider how the client-
part finished a protocol run in the experiments: Either, it
forwarded data successfully to one of its peers (success). Or,
some failure occurred during the forward and the client saved
that data locally to try again in the next run (failure). Or, the
client missed the opportunity to forward data because each
time it run a discovery all potential server peers had already
finished their run (miss). Figure 4 depicts the count of these
outcomes relative to the overall number of protocol runs as
success, failure, and missed ratio. At least two phones had
to be part of the experiment to allow for a p2p connection.
The average success ratio increases from 70 percent for two
phones to 94 percent for five phones. At the same time the
probability that a client misses co-located servers decreases
from 28 percent to three percent. This is remarkable since
the phones are not synchronized and need to coordinate their
discovery and networking times. The failure ratio is below
three percent irrespective of the number of phones. Failures
do not increase despite the increase of phones which increase
the number of forwards and the possibility of error. Failure
occurred because in some cases the status had been incorrectly
set in the implementation while in other cases the delay
between changing the status and executing the corresponding
action was too short for peers to notice.

C. Data delay

One aspect of the protocol’s overhead is how long data takes
to be available at the campaign server. Figure 5 shows the
delay from sensor data being collected to the time it arrives at
the campaign server. For the baseline, data is available within
21 (£7) seconds independent from the number of phones since
each phone uploads data directly. Notice, this result refers to
ideal networking conditions of an lab environment and omits

75

M success

Ratio [%]

miss

M failure

I.L ‘_x_ L_ "

Number of phones

Fig. 4. The protocol allows for reliable p2p data forwarding.

I

Number of phones

400

350

300

250

200

Delay [s]

baseline

150 M protocol

100

0

Fig. 5. The protocol delays the availability of data.

the rare cases when the phones experienced connection prob-
lems. For the protocol, the delay increases with the increase
of co-located phones toward 4 (£2) minutes. Experiments
with a single phone show that there is basic delay due to
the time-intensive Bluetooth discovery and Bluetooth server
socket. Follow-up experiments with four phones showed that
reducing the socket timeout from 30 to 15 seconds, decreases
the delay by one minute and increases the failure ratio from
3 to 5 percent. The main delay stems from the active use of
the p2p network. In the experiments with 5 phones, data took
one hop (in 52 percent of the cases), two hops (40 percent of
the cases) and more than two hops (8 percent of the cases) to
arrive at the server, at each hop waiting for the peer to make
its forwarding decision.

D. Energy consumption

Another aspect of the protocol’s overhead is its impact on
battery. We recorded the remaining battery level over time
for a client peer and a server peer. The client peer was
configured to only forward its own data while the server peer
only accepted peer data and uploaded to the server. Pretests
confirmed that these two represent the lower and upper bound
for energy consumption i.e. the overhead of the other phones

CASPer'19 - 6th International Workshop on Crowd Assisted Sensing, PERvasive Systems and Communications

—Dbaseline

————— server (2 phones)

Battery level [%]

server (5 phones)

70

0 1 2 3 4 5
Time [h]

Fig. 6. The protocol’s impact on battery is moderate.

that both accept and forward data is somewhere in between
these bounds. Figure 6 shows the decline of the phones’
battery level for the server peer representing the upper bound.
In the two-phone scenario the decline is similar to that of
the baseline. This changes with the increase of co-located
phones. After four hours of running the 5-phone scenario, the
server peer has four percent less battery than the baseline. The
measurements for the client peer (not depicted) are similar in
that there is no significant difference compared to the baseline
if two phones were involved. In case of five phones, the
difference after four hours to the baseline was, however, only
two percent.

E. User acceptance

In addition to these experiments, we ran a field trial at
an indoor fair to study how acceptable it is for visitors to
enable Bluetooth, run the protocol and share their positions.
For this, the protocol was integrated in the fair’s gamified
event app with game mechanics for motivating users to activate
Bluetooth and share their location. The analysis shows that 36
percent of the app users (in total 27 people) participated and
run the protocol for an average duration of 55 minutes. This
motivates studying the protocol’s performance at larger scale
in future.

V. DISCUSSION AND CONCLUSION

This paper addresses mobile crowd monitoring at large-scale
events and the problem of long delays for data to become
available due to network overload. The proposed protocol
collects sensor data from contributors in a Bluetooth p2p
network and assigns a selected few that upload the data to
the final destination. Working with modern phones, however,
means to coordinate the phases for discovery and networking.
Global schedules and exact timeouts are not suitable because
the phones operate on individual time windows and the mobile
OS (rather than the monitoring app) decides when to run
a background process. The protocol makes peers aware of
their neighbours’ state and enables them to align their actions
accordingly.

76

Experiments show that p2p forwarding works reliably al-
ready for a small set of co-located phones and reduces the use
of Wifi significantly. The lesson learned in terms of Bluetooth
communication is that: a) discovery should be cancelled as
soon as a suitable communication partner appears and b)
that internal state transition should be delayed after their
announcement to reduce transmission failure due to stale state
information. Further in terms of overhead, the impact on
battery is acceptable while the data delay is considerable com-
pared to almost instant availability when phones upload their
data directly. This means that if the networking infrastructure
is stable, direct uploads will outperform a p2p approach. If,
however, networking problems occur and data is at risk of not
being shared or being delayed for hours, the protocol is be a
viable alternative. The lesson learned here is, the more hops
data travels in the p2p network, the lower the impact on the
networking infrastructure but the longer for data to arrive at
the server.

As the proposed protocol is only one way to forward crowd
monitoring data, the next step is to explore other criteria for
the forwarding decision and how they improve the balance
between network load and data delay.

ACKNOWLEDGMENT

Many thanks to Martin Johst for helping implement the
protocol and conduct the experiments.

REFERENCES

[1] P. Castagno, V. Mancuso, M. Sereno, and M. A. Marsan, “Why your
smartphone doesn’t work in very crowded environments,” in /EEE
18th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), June 2017, pp. 1-9.

[2] L. Castro, J. Beltran, M. Perez, E. Quintana, J. Favela, E. Chavez,
M. Rodriguez, and R. Navarro, “Collaborative opportunistic sensing
with mobile phones,” in Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, ser. UbiComp *14 Adjunct. ACM, 2014, pp. 1265-1272.

[3] T. Xi, W. Wang, E. C. . Ngai, Z. Song, Y. Tian, and X. Gong, “Energy-
efficient collaborative localization for participatory sensing system,” in
2015 IEEE Global Communications Conference (GLOBECOM), 2015,
pp. 1-6.

[4] J. Eberle, Z. Yan, and K. Aberer, “Energy-efficient opportunistic col-
laborative sensing,” in IEEE 10th International Conference on Mobile
Ad-Hoc and Sensor Systems, 2013, pp. 374-378.

[5] R. Loomba, R. de Frein, and B. Jennings, “Selecting energy efficient
cluster-head trajectories for collaborative mobile sensing,” in [EEE
Global Communications Conference (GLOBECOM), 2015, pp. 1-7.

[6] U. Demir, C. Tapparello, and W. Heinzelman, “Maintaining connectivity
in ad hoc networks through wifi direct,” in IEEE 14th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2017, pp.
308-312.

[71 V. Arnaboldi, M. G. G. Campana, and F. Delmastro, “Context-aware
configuration and management of wifi direct groups for real opportunis-
tic networks,” in 2017 IEEE 14th International Conference on Mobile
Ad Hoc and Sensor Systems (MASS), 2017, pp. 266-274.

[8] E. Wang, Y. Yang, J. Wu, and W. Liu, “Phone-to-phone communication
utilizing wifi hotspot in energy-constrained pocket switched networks,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 10, pp. 8578—
8590, 2016.

[91 S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “Wlan-

opp: Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc

Networks, vol. 25, pp. 346 — 358, 2015.

S. Bergemann, J. Friedrich, and C. Lindemann, “Neighborhood-aware

opportunistic networking on smartphones,” in IEEE 14th International

Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2017, pp.

126-134.

[10]

