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Abstract—This article reports on coupled smartwatch and
smartphone pervasive apps enabling stress self-regulation. Stress,
the physiological responses of an organism to demanding condi-
tions, can be both beneficial and harmful. Beneficial stress, or
eustress, enhances physical or mental abilities. Harmful stress, or
distress, can result in reduced abilities, anxiety, or depression. The
potential of pervasive computing to enable stress self-regulation,
that is, the ability to benefit from eustress while avoiding or
limiting distress, is explored in this article. It first reports on Stila
Computed Stress, a stress estimate computed after an original
model from pulse rates delivered by smartwatches. This article
then describes how Stila Computed Stress is combined with users’
activity reports and pervasively delivered on their smartwatches
and smartphones. It further reports on a real life evaluation
pointing to the pervasive apps’ persuasiveness, that is, the apps’
capacity to increase subjective stress awareness so as to enhance
stress self-regulation.

Index Terms—Computed Stress, Heart Rates, Smartwatch,
Fitness Wristband, Behavior Change, Pervasive Computing

I. INTRODUCTION

This article reports on the Stila smartwatch and smartphone
apps that collect pulse rates and activity reports from their
users, compute from the pulse rates stress estimates using the
original model Stila Computed Stress, and deliver activity-
related stress estimates thus enabling the apps’ users to better
regulate their stress.

Stress [1], the manifold physiological responses of an
organism such as increased energy and raised attention to
demanding conditions, can be beneficial in which case it
is called eustress [2]. Eustress enhances physical or mental
abilities like an acute attention and strengthens the resilience of
students passing examinations [3]. Stress can also be harmful,
in which case it is called distress [4]. Distress often results in
reduced abilities, anxiety, or withdrawal behaviors commonly
referred to as depression [5]–[7].

Stress self-regulation [8] is the highly desirable ability to
benefit from eustress while avoiding or limiting distress. Dis-
tress self-regulation often takes place through health-harming
behaviors such as smoking, alcohol consumption, or overeat-
ing [9]. An increase in stress awareness may lead to self-
regulation of attention and this approach might reduce emo-
tional distress without triggering the aforementioned health-
harming behaviors [10].

This article aims at exploiting the potential of pervasive
computing to enable stress self-regulation through the increase
in stress awareness. The research has been motivated by

an observed need among students for a better stress self-
regulation: 49% of high school students, especially female
students, have reported continuous or high stress [11].

The standard approaches to stress detection rely on elec-
trocardiography (ECG), galvanic skin response (GSR) and
accelerometers to detect stress with dichotomous outputs [12]–
[14]. These approaches [12]–[14] require many sensors what
makes them more invasive than a fitness wristband or a
smartwatch and sometimes even makes them obtrusive: These
sensors cannot always be used in everyday life and their heavy
equipments may even turn them into stressors.

Computed stress [15] denotes a stress estimate computed
from limited physiological data, typically heart rate variability
(HRV) [16]. HRV has been shown to be a convenient basis
for computed stress [15]. Many studies [17]–[20] have been
devoted to specifying and investigating various HRV-based
computed stress models referring to heart rate changes over
time or to changes in heart rate frequencies. These models
mostly rely on linear or non-linear features. The computed
stress determined from heart rates proposed in the studies
[17]–[20] cannot be used without further adaptations when
heart rates are collected with fitness wristbands or smart-
watches because those devices have lower sampling rates and
do not collect enough data.

Fitness wristbands and smartwatches with photoplethys-
mography (PPG) sensors are promising for a non-invasive
stress detection because they rely on passive sensing to provide
pulse data that can be exploited for analyzing heartbeat inter-
vals. Photoplethysmography (PPG) and Pulse Rate Variability
(PRV) have been shown to be reliable alternatives to HRV for
healthy subjects [21].

This article first describes the Stila Computed Stress model
that uses pulse rates pervasively collected through PPG with
fitness wristbands and smartwatches. It further describes how
Stila Computed Stress estimates have been combined with
users’ activity reports and pervasively delivered to the users
using the original coupled Stila smartwatch and smartphone
apps (http://stila.pms.ifi.lmu.de), which are designed after the
principles of persuasive systems: Self-monitoring, simulation,
reduction, tailoring, personalization, and tunneling [22]. This
article finally reports on a real life evaluation of the pervasive
Stila apps.

The original contributions of this article are as follows:
• Stila Computed Stress, an original stress estimate
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• The coupled pervasive Stila smartwatch and smartphone
apps that pervasively inform on stress levels

• A report on a real life evaluation pointing to the persua-
siveness of the pervasive Stila apps

This article is structured as follows. Section I is this
introduction. Section II is devoted to related work. Section
III describes Stila Computed Stress. Section IV presents the
Stila smartwatch and smartphone apps. Section V reports on
a real life evaluation of the Stila apps. Section VI is devoted
to a discussion. Section VII is a conclusion.

II. RELATED WORK

The research reported about in this article is related to
stress estimates from heart and pulse rates, pervasive stress
monitoring, persuasive computing for behavior change, per-
suasive mobile applications, and addiction to pervasive devices
or apps.

a) Stress Estimates From Heart and Pulse Rates: Heart
rate variability (HRV) is the fluctuation over time of heartbeat
intervals. HRV expresses the strength of the autonomic ner-
vous system, more precisely of the sympathetic and parasym-
pathetic nervous systems, at a given time: A lower (higher,
resp.) value in HRV indicates a higher (lower, resp.) stress
level [16]. PRV has been shown to be a reliable alternative
to HRV for healthy subjects [21]. HRV scores refer to the
following parameters:

• NN or RR: Time between two successive heart beats
• meanRR: Average of RR (or NN) over a time span
• RMSSD: Root of the mean square of the difference of

successive NN (or RR)
• SDNN: Standard deviation of NN (or RR)
• NN50: Number of pairs of successive NN (or RR)

differing by more than 50 ms
• pNN50: Proportion of NN50 over a time span divided by

the total number of NN (or RR) in that time span
Using a mental sensor measuring artificially imposed stress

Taelman et al. [23] observed that pNN50 and meanRR are
lower when mental tasks are performed than during rest.

Li et al. [24] estimated stress with 89% accuracy during
mental arithmetic task using PPG raw data collected from
Huawei Watch 2 smartwatches. Their approach [24] consists
in deriving PRV in 1.5 min intervals, in using an elastic net
based on a differential feature vector and the subjective stress
reported by the subjects, and in assuming a linear dependency
between the pulse variability differential and the stress level
differential of a subject.

b) Pervasive Stress Monitoring: Egilmez et al. [14]
designed the UStress system for investigating the subjective
stress of college students using both pervasive custom-made
wrist-worn and pervasive LG Urbane 2 smartwatches mea-
suring the galvanic skin response (GSR) and pulse rates at
a 5 Hz sampling rate. Invasive chest-band Polar H7 and
GSR sensors were used to verify the accuracy of the stress
estimates computed from pervasive GSR and pulse rate data.
In a laboratory study with 9 participants, stress was shown to

be accurately detected using the pervasive devices collecting
GSR and pulse rate data (F-measure of 88.8%) [14].

StudentLife [25] is an Android smartphone app estimating
its users’ stress from the correlation between continuous
smartphone sensing and self-reported stress and mood. The
smartphone sensors used by StudentLife are the accelerometer,
the microphone, the light sensor, and the GPS locator. A field
study with StudentLife has shown that students having more
frequent and longer conversations at day time are less likely
to feel stressed [25].

Elite HRV [26] is a smartphone app that relies on a chest
strap (like Polar H10 HRM) for computing HRV scores. It
helps athletes to reach their optimal training intensity. Note
that a chest strap is more invasive and less convenient in
everyday life than a fitness wristband or a smartwatch.

Health apps for smartwatches (mostly provided by the
smartwatch vendors, like Samsung S Health, LG Health, and
Apple Health) also provide stress estimates. To the authors’
knowledge, so far neither the computed stress model of these
apps has been disclosed, nor studies on the models’ accuracies
have been published.

c) Persuasive Computing For Behavior Change: Fogg
[27] defined a persuasive technology as “any interactive
computing system designed to change people’s attitudes or
behaviors” as well as the three roles that computers could
take: Tool, media, and social actor.

Torning and Oinas-Kukkonen [28] provided an overview
on the design of persuasive systems based on the systems
developed between 2006 and 2008. Tailoring, tunneling, re-
duction and social comparison were reported in this overview
as the most widespread forms of persuasion technique. Oinas-
Kukkonen and Harjumaa [22] emphasized the aspects of
process model and system features that were key in designing
persuasive systems.

Fogg [29] introduced the behavior model FBM for per-
suasive design which considers three principal factors: Mo-
tivation, ability, and triggers. FBM states that increasing the
motivation or the ability of an individual with a trigger event
at an appropriate time point is likely to result in this individual
adopting the target behavior.

O’Brien [30] suggested to see user engagement as “a
quality of user experiences with technology” and proposed
a Process of Engagement that users go through while using
a technological artifact. Long-term engagement is especially
significant for persuasive wearables since behavior changes
can be lengthy processes. Ledger and McCaffrey [31] iden-
tified three key factors towards improving users’ long-term
commitment to wearables and the services they provide and
underlined that wearables should encourage the formation of
habits of sustained engagement. Such a formation can take
place thanks to triggers on the wearable that remind their users
of adopting a certain behavior.

d) Persuasive Mobile Applications: Affective Health is
a mobile system aiming at relating its users’ daily activities
with their memories and with their subjective stress. It detects
certain bodily reactions and visualized them on smartphones.
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In a Wizard of Oz experiment [32] in which subjects inter-
act with a computer system while believing the system to
be autonomous although it is (partly or fully) operated by
humans, visualizations of stress feedback aiming at causing
no additional stress were investigated [33]. In this experiment
[33] visualizations of feedback leaving interpretations open,
showing stress retrospectives, and updatable in real time were
reported as desirable by the participants.

Several studies have investigated the impact of engagement
on behavior change. Consolvo et al. [34] reported on increas-
ing users’ engagement via goal setting with a cellphone soft-
ware so as to encourage individuals to increase their physical
activity. Dennison et al. [35] reported that the ability to track
behaviors, to set goals, and to get advices and information
“on the go” are desirable features of the apps fostering health-
improving behavior changes.

Ashbrook et al. [36] reported on an investigation of the
impact on the device access time with both stored in pocket
and on-body devices. They reported that up to 78% of the total
reaction time was spent only for reaching the devices stored
in pockets [36].

e) Addiction to Pervasive Devices or Apps: Van Deursen
et al. [37] reported on the influence of usage types, emo-
tional stress, social stress, self-regulation, age, and gender on
an addictive smartphone use. They observed that a habitual
smartphone use was an important contributor to an addictive
smartphone use and that a process-related smartphone use was
a strong determinant for developing both a habitual and an
addictive smartphone use [37].

Elliot et al. [38] reported that the more participants pursue
avoidance goals, the higher the decrease in their subjective
well-being. An avoidance goal [38] is a goal like “avoid dis-
tress” or “don’t drink alcohol” which expresses an interdiction.

III. STILA COMPUTED STRESS: A PERVASIVELY
COMPUTED STRESS ESTIMATE

The Stila smartphone app uses either a Fitbit fitness wrist-
band with a continuous pulse tracking or a Wear OS by Google
smartwatch equipped with the Stila smartwatch app as pulse
rate providers.

The pulse rate stream is preprocessed into 10 min intervals
starting at the beginning of each day. A stress estimate is
computed for each of these intervals. RMSSD (defined above
in the section II1) is used as an approximation of HRV/PRV
(see Section II1). The rational is that RMSSD, in contrast
to other HRV measures such as pNN50, can be considered
robust against noise and missing data because it expresses the
cumulative differences between the time points of consecutive
heartbeats.

The following equations, where T is a scaling constant (T
= 20), Cpop is a translating constant (Cpop = 110), and X̂
denotes an estimate of a variable X , define Stila Computed
Stress, short SCS:

R̂Ri = 60/PRi (1)

̂RMSSD =

√∑n
i=1(R̂Ri − R̂Ri−1)2

n− 1
(2)

HRVScore = ln( ̂RMSSD × 103)× T (3)

SCS = Cpop −HRVScore (4)

These equations are explained as follows:
(1) converts a pulse rate (PRi) at time i into an estimate

of RRi.
(2) gives an estimate of RMSSD. n is the number of pulse

rates in the time interval considered.
(3) derives a HRV score from ̂RMSSD. T is a constant

upscaling the values of HRVScore to the range 10-110.
(4) specifies Stila Computed Stress (SCS). Cpop is a

constant shifting the SCS values in the range 0-100. A low
(high, resp.) HRVScore yields a high (low, resp.) SCS.

In short, Stila Computed Stress is obtained by a linear
transformation of a RMSSD estimate computed from RR
estimates derived from pulse rates.

The validation of the stress estimate (SCS) requires further
investigation. It is out of the scope of this article and will be
addressed in a companion paper.

IV. THE STILA SMARTWATCH AND SMARTPHONE APPS
USER INTERFACES

The Stila smartwatch and smartphone apps have two pur-
poses: To inform their users on their stress (by displaying
their Stila Computed Stress) and to collect from their users
the activity reports (so as to relate stress and activities).

(a) Stress Graph (Phone)

(b) Stress Graph (Watch)

(c) Activity List (Watch)

(d) Reporting an Activity

Fig. 1: Stila’s Stress Information and Activity Reporting
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a) Phone App: Figure 1a first shows the Stila Computed
Stress graph: The horizontal axis is a time line and the vertical
axis gives the computed stress observed for every 10 min
interval. The horizontal red line indicates a computed stress
value of 50 in a range of 0 to 100. The vertical axis has
no scale so as to both sustain pre-attentive comparisons and
prevent exact value comparisons deemed harmful to stress self-
regulation.

Figure 1a also shows an activity list. A new activity can
be added by pressing a button what opens an activity report,
that is, a short questionnaire using which a user can name
an activity, her perceived stress level and feeling during that
activity as well as a few other information. A smiley expresses
the perceived feeling during an activity. One to five smileys
express the perceived stress level (1: low to 5: high).

The compound Stila Computed Stress graph and activity
list have been designed after the simulation principle [22] so
as to incite users to compare their computed and perceived
stress levels and to relate these levels with their activities
thus fostering their stress self-regulation. Every three hours,
a notification reminds of reporting activities.

The Stila smartphone app can be used with a Fitbit
wristband acting as pulse sensor from which the pulse data
are fetched by the user over a Fitbit cloud service. As a
consequence, the Stila Computed Stress graph cannot be
automatically updated in real time but instead periodically
requiring user intervention. The Stila smartphone app can also
be used with a smartwatch in which case the Stila Computed
Stress graph is automatically updated in real time without user
intervention.

b) Smartwatch App: The Stila smartwatch app offers
color customizable digital and analog watchfaces. It collects
pulses at adjustable rate (1 Hz, 0.2 Hz, and 0.1 Hz) and syn-
chronizes the recorded pulse rates with the Stila smartphone
app which processes them, determines the Stila Computed
Stress (SCS) for every 10 min interval, and synchronizes SCS
with the Stila smartwatch app. Figure 1b shows how the Stila
Computed Stress graph is rendered on a smartwatch.

The activity list is both-way synchronized between the Stila
smartwatch and smartphone apps. Because of the limited size
of a smartwatch display, it is rendered on a smartwatch in
a separate scrollable view – see Figure 1c. Figure 1d shows
an activity report with its associated user-reported stress level.
The user can access the further information by scrolling down.
The questions asked in an activity report are the same on
the smartwatch and smartphone apps. A live recording of an
activity can be started with a play button and ended with a
stop button allowing for a precise and easy tracking of the
time range of an activity.

When the Stila Computed Stress crosses a threshold, a stress
event is registered. After the computed stress has returned to
a normal level, a notification is sent to the user suggesting to
report on her perceived stress and on the activity that caused
it. This way, notifications are triggered only “at rest” and do
not cause stress.

The Stila smartwatch app has been designed after Fogg’s
behavior model (FBM) [29] based on the same self-monitoring
and simulation principles as the Stila smartphone app and
enhanced with further reduction, tailoring, tunneling, and
personalization principles [22]. Thus, compared with the Stila
smartphone app, the Stila smartwatch app increases the user’s
ability to examine her stress in real time and to comfortably
report on her activities and perceived stress levels during her
activities.

The results of the studies [37], [38] mentioned above in
Section II have been considered by designing the Stila apps:
The Stila apps do not send messages that could trigger an
addictive smartphone use and do not rely on their users setting
avoidance goals.

V. EVALUATION

A quantitative and qualitative evaluation was devoted to
investigating whether the coupled Stila smartwatch and smart-
phone apps are more persuasive than the smartphone app
alone.

A. Research Question

Do the coupled Stila smartwatch and smartphone apps better
improve their users’ stress awareness than the Stila smartphone
app alone?

B. Method

An experiment has been conducted for determining whether
the users of the Stila apps differently react and behave de-
pending on whether they use only the smartphone app (the
heart rates being collected with a fitness wristband) or both
the smartwatch and smartphone apps. A user group using both
the smartwatch and smartphone apps was the group of interest.
A user group using only the smartphone app was the control
group.

It is worth noting that the Hawthorne Effect [39]–[41] does
not invalidate the inter-group comparison because both groups
were observed and knew it. The Hawthorne Effect is, in this
context, that the study participants, knowing that their usage
of the apps is observed, are using the apps more frequently
than they would otherwise do.

The control group serves to estimate an increase in the
apps usage, that is, in the consultation of the Stila Computed
Stress (SCS), resulting from the smartwatch app. Such an
increase would demonstrate that the higher pervasiveness of
the smartwatch app increases the stress awareness.

Thus, a participant’s stress awareness is estimated by how
often she consults her Stila Computed Stress (SCS). This esti-
mate is enhanced with the participant’s answers to a qualitative
survey on her (subjective) stress awareness perception.

C. Hypotheses

The following null hypotheses are derived from the previous
research question:

• There are no differences in the usage of the Stila apps
between the two user groups.
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• There are no differences in the subjective increase in
stress awareness between the two user groups after the
experiment

D. Setup and Sample Data

86 participants aged 18 to 61 (mean age: 31) were re-
cruited online (among others on Reddit and the Quantified
Self Forum). They were awarded no compensations. 43 par-
ticipants, the watch group, were instructed to use the Stila
smartwatch and smartphone apps. 43 participants, the phone
group, were instructed to use the Stila smartphone app and
fitness wristbands (Fitbit PurePulse). The fitness wristbands
collected pulse rates but, in contrast to the smartwatches, did
not inform their users on their computed stress and could not
be used for reporting activities (what had to be done using
the Stila smartphone app). All participants were instructed to
use the Stila app(s) during 15 days, to regularly check their
computed stress on the Stila app(s) and to report their activities
every day using the Stila app(s). They all received the same
few email reminders.

The evaluation was based on the participants answers to
an online questionnaire (available at http://stila.pms.ifi.lmu.de/
experiments/pervasivepersuation.html) sent to all participants
at the end of the experiment and on the participants’ usage
of the Stila app(s) during the experiment. (Usage data were
collected with an instance of the Matomo analytics platform
deployed for the experiment.)

The online questionnaire was devoted to the participants’
subjective appreciation of the Stila app(s). It consisted of 16
statements to rate on a Likert scale from 1 (strongly disagree)
to 5 (strongly agree), of 15 questions (on the app(s) usage and
demographics) to answer with multiple choices, and of 5 free
text fields for comments or feedbacks. 24 participants (watch
group 11, phone group: 13) answered the questionnaire.

The Stila app(s) usage data of a participant were UE1 the
total number of apps’ visits (for consulting stress estimates or
entering activity reports) and UE2 the total number of activity
reports entered over the 15 days of the experiment. In the
evaluation, the usage data of the 62 participants (phone group:
33, watch group: 29) are considered who reported at least 4
activities.

E. Variables

The following 8 variables have been used to compare the
two groups, each of which is either derived from the collected
usage data (UE1 and UE2) or had been reported, that is, a
questionnaire answer:1

• User Motivation:
– UM1: Number of users per group using the Stila

app(s) per day
– UM2: Reported initial motivation to use the Stila

app(s)
– UM3: Reported decreasing interest in the Stila app(s)

1The questionnaire answers and the processed usage data are available at
http://stila.pms.ifi.lmu.de/experiments/pervasivepersuation.html.

• User Engagement:
– UE1: Number of visits of a Stila app
– UE2: Number of activity reports
– UE3: Reported frequency of app(s) visits

• Task Efficiency TE: average time spent in reporting an
activity

• Stress Awareness
– SA1: Reported stress awareness
– SA2: Reported stressor recognition

F. Analysis

The questionnaire answers’ distributions are rather symmet-
rical suggesting that their normalities can be assumed. Normal
distribution make sense since, usually, opinions are evenly
spread. The usage data UE1 (number of apps’ visits per user)
and UE2 (number of activity reports per user) distributions are
asymmetric leaning to the lower values suggesting that they
can be assumed to follow Zipf’s (or power) laws. Zipf’s laws
make sense for usage data since, usually, the longer the time
elapses, the more users have given up their use of a novel tool.
The normality and skewness of all data samples were tested
with a D’Agostino omnibus test (α = 0.01) and Q-Q plots.

The null hypothesis for a variable is that no differences
in that variable’s values can be observed between the watch
group and the phone group.

Since the distribution of a variable which is a questionnaire
answer is normal and since the groups consist of 43 partici-
pants, the null hypothesis can be tested with a Student’s t-test.

Since the distribution of a variable which is derived from the
usage data UE1 and UE2 follows a Zipf’s law, since the watch
group and the phone group could not influence each other, and
since the groups consist of 43 participants, the Wilcoxon rank-
sum test (or Mann-Whitney U test) can be used for testing the
null hypothesis.

p-values smaller than 0.05 were considered significant.

G. Results

a) Motivation: The watch group rated UM2 (“My mo-
tivation to use the Stila App at the beginning of the study
was high") on average 4.6, the phone group 4.5 (t-test: p =
0.37). The watch group rated UM3 (“My motivation to use the
App decreased during the study") on average 3.1, the phone
group 3.3 (t-test: p = 0.33). No differences regarding both
the initial motivation and motivation drop between the groups
were observed. 41 members of phone group and 36 members
of watch group have used Stila apps during the study. The
number of daily active users (UM1) dropped similarly for
both groups. At the end of the experiment, each group had
10 members still using the Stila app(s). The user drop can be
interpreted as a motivation drop.

b) User Engagement: 63% of the watch group but only
18% of the phone group reported more than two app(s) visits
a day. A member of the watch group visited both Stila apps on
average 46 times (mean: 46), a member of the phone group
only 17 visits (rank-sum: p = 0.01). 38 participants (phone
group: 21, watch group: 17) reported activities. A member of
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TABLE I: Evaluation Summary

Variable Phone Group Watch Group p Value

UE1: Total Visits µ: 17 (n=33) µ: 46 (n=29) 0.01†

UE2: Total Reported Activities µ: 24 (n=21) µ: 37 (n=17) 0.05†

TE : Activity Reporting Time µ: 16s (n=21) µ: 19s (n=17) � 0.01‡

UE3: Reported Frequency of Visits often: 18% often: 63% –
UM2: Reported Initial Motivation µ: 4.5∗ (n=13) µ: 4.6∗ (n=11) 0.37‡

UM3: Reported Motivation Drop µ: 3.3∗ (n=13) µ: 3.1∗ (n=11) 0.33‡

SA1: Reported Stress Awareness µ: 2.5∗ (n=13) µ: 3.5∗ (n=11) 0.02‡

SA2: Reported Stressor Recognition µ: 2.3∗ (n=13) µ: 2.7∗ (n=11) 0.22‡
∗< 3: denied; >3: confirmed
†Wilcoxon rank-sum test, often: more than 2 daily app(s) visits
‡one-tailed t-test, µ: mean, n: sample size

the watch group reported on average 37 activities, a member
of the phone group 24 (rank-sum: p = 0.05). The watch group
reported 75% of activities using the Stila smartwatch app and
25% using the Stila smartphone app.

c) Task Efficiency: A member of the watch group spent
on average 19 seconds to report an activity, a member of the
phone group 16 seconds (t-test: p � 0.01).

d) Stress Awareness: The watch group confirmed that
“The Stila app(s) helped me to be more aware of my stress
levels" (SA1) with an average of 3.5 and a variance of 1.07
while the phone group disagreed with an average of 2.5 and a
variance of 1.32 (t-test: p = 0.02). The watch group disagreed
with “The Stila app(s) helped me to identify stressors in my
life" (SA2) with an average of 2.7, the phone group also
disagreed with an average of 2.3 (t-test: p = 0.22). This
suggested that the watch group reported a subjective increase
in its stress awareness while using Stila apps and that none of
the groups were well capable of identifying stressors.

Table I summarizes the findings reported about above.

VI. DISCUSSION: PERVASIVENESS PERSUADES

As underlined in Section V, more activities were reported
by the watch group than by the phone group even though
reporting an activity takes more time with the Stila smartwatch
app (due to the smartwatch’s small screen size) than with the
Stila smartphone app. The pervasiveness of the smartwatch
is the likely reason for this discrepancy because up to 78%
of the total time needed for reporting an activity with a Stila
smartphone app may be spent for reaching the smartphone
device [36].

The watch group also consulted the Stila app(s) more often
than the phone group what might be explained by Fogg’s
behavior model (FBM) [29]. Indeed, the pervasive smartwatch
app facilitates perception and therefore fosters stress self-
regulation.

The higher pervasiveness of the smartwatch app and the
seamless integration of its feedback with the smartphone app
are the likely reasons why the watch group reported increases
in stress awareness while the phone group did not.

VII. CONCLUSION

This article has reported on the coupled Stila smartwatch
and smartphone pervasive apps enabling stress self-regulation.

The apps rely on the original Stila Computed Stress model
that uses pulse rates pervasively collected through PPG with
fitness wristbands and smartwatches. Through the apps, these
estimates are combined with users’ activity reports and per-
vasively delivered to the apps’ users. The Stila apps were
designed after the principles of persuasive systems.

The pervasive smartwatch app coupled with the smartphone
app has been shown in an experimental real life evaluation to
better persuade its users to consult their stress and to report on
their activities, their feelings and their perceived stress levels
during these activities. Thus, the coupled Stila smartwatch and
smartphone pervasive apps better foster stress awareness and
therefore stress self-regulation than the smartphone app alone
does. In other words, pervasiveness better persuades.

More research on the Stila apps is needed. The validation on
the stress estimate (Stila Computed Stress) is outstanding and
deserves further investigation and will be reported about in a
companion paper. Moreover, the impact of the stress awareness
gained from using the Stila apps on both, stress levels and
general well-being, deserves further investigation. Finally, the
impacts of a better stress awareness and an improved stress
self-regulation on the learning performances of the students
deserve further research.
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