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Abstract—Network emulation techniques are helpful to eval-
uate the operation and the performance of applications and
protocols on network systems including vehicular ad-hoc network
(VANET). We have proposed a wireless network emulation
environment using a wireless network tap device (wtap80211),
a virtual wireless network device and provides interfaces that
enables a network simulator to capture real IEEE 802.11 frames,
transmission control information such as transmission power
and frequency, and reception status information such as Receive
Signal Strength Indicator (RSSI) and Basic Service Set (BSS).
Therefore, with the emulation framework, a network simulator
can imitate radio propagation and the mobility of network nodes.
On the other hand, to fully exploit the emulation framework,
monitoring and controlling a network system is important. Since
the topology of VANET always change due to the mobility
of vehicles, we need to oversee all network nodes to grasp
the reachability of beacons sent by vehicles. In this paper,
we design a network monitoring interface for a large-scale
wireless network system focusing on V2V wireless networks.
using wtap80211-based wireless network emulation framework
and introduce mechanisms that improve the performance of
network monitoring.

Index Terms—VANET monitoring, wireless network emula-
tion, wireless network tap device.

I. INTRODUCTION

Wireless network emulation is useful for developers and
researchers to evaluate the operation and performance of
wireless network systems with real applications and operat-
ing systems without the construction of a physical network
environment. For evaluating the behavior and performance of
vehicular network (VANET) systems and applications, wire-
less network emulation is more suitable than experimentation
because experimentation is hard to repeat with the same
condition and to apply to large-scale networks such as a
VANET at a city center.

Fig. 1 shows an example of vehicle-to-vehicle (V2V) com-
munication emulation. In Fig. 1, an operating system and
network applications work on a virtual wireless network en-
vironment in which a network simulator imitates the behavior
of wireless communication environments such as radio prop-
agation and the mobility of communication-enabled virtual
vehicles. A virtual vehicle moves in the network simulation
environment according to the output of a driving simulator.
Wireless network emulation enables to evaluate the perfor-
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Fig. 1: Examples of vehicular network emulation.

mance of vehicle-to-everything (V2X) transmission manage-
ment protocols, such as ETSI ITS-G5 DCC and Adaptive
Traffic Beacon protocol (ATB) [1] using the virtual wireless
network and real application software and operating system.

In [2], we proposed a wireless network emulation frame-
work using the wireless network tap device (wtap80211).
We implemented a wireless network tap device as a virtual
wireless LAN device driver on Linux operating system. The
device software communicates with a Linux kernel and ex-
changes real IEEE 802.11 frames and information to manage
wireless LAN communications such as received signal strength
indication (RSSI), transmission power and frequency, basic
service set (BSS) with wireless network emulation.

To fully exploit the emulation framework, monitoring and
controlling the environment is indispensable for validating the
operation and performance of the wireless network system.
The emulation of a wireless network system needs to control
the emulated network nodes to work according to the emu-
lation scenario correctly. In particular, in vehicular networks,
since V2V communication is broadcast-based communication
because network nodes always move, it is necessary to watch
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all communication-enabled vehicles to monitor the connec-
tivity of the vehicles because the link condition changes. In
addition, application programs on vehicles generate messages
according to their current situation. Therefore, the tight inte-
gration of emulated physical condition of network nodes, links,
and the behavior of real software on real hardware is required.

On the other hand, visualizing and validating network
statistics and the operation state of network nodes sometimes
are burdensome for developers and researchers because they
require to spend extra effort on developing monitoring tools
not relevant to their work. In general, analysis of many log
messages of emulation is generally complicated, and the mon-
itoring tools require more machine resources as the number of
emulated network nodes increases.

The popular way to store the results of emulation is to
write them to a log file on a secondary storage such as a
solid state drive. The overhead of filesystem APIs with the
accesses to the secondary storage is, however, high because
the APIs execute many system calls and require to copy data
between the user space and the kernel space. Therefore logging
using the filesystem APIs degrades the performance of the
network system. The increase of machine loads deteriorates the
adequacy of the emulation results by the observer effect, that
means observing processes in running cause negative impact
on the behavior of the processes.

Thus, in this paper, we design a light-weight wireless net-
work monitoring system based on wtap80211-based wireless
network emulation framework. We introduce logging mech-
anisms that write/read log messages to/from random access
memory (RAM). The mechanisms do not access secondary
storages and do not require to copy log messages between the
user space and the kernel space. Therefore, the mechanisms
enable to monitor many wireless network nodes working
on the emulation framework without degrading the system
performance because the mechanisms reduce the number of
system calls compared with a case using secondary storages.

The remainder of this paper is structured as follows:
Section II presents the related work. Section III introduces
the wtap80211-based wireless network emulation framework.
Section IV describes the design and the mechanisms of the
wireless network monitoring system with the emulation frame-
work. Section V concludes the paper with future work.

II. RELATED WORK

The common issue of network monitoring across network
emulation and experiments is the difficulty of control of
network nodes and treatment of a large number of log mes-
sages. In this section, we describe the features and issues of
existing work that focuses on network monitoring of large-
scale emulated or real networks. We classify the existing work
into two categories: active monitoring and passive monitoring.
Then, we present requirements for VANET monitoring in
network emulation.

A. Active monitoring
Active monitoring refers to that a network monitor oversees

the operation of network nodes by polling them. Fig. 2a
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Fig. 2: Examples of active and passive monitoring

shows an example of active monitoring in a network emulation
environment. The network emulation environment consists of
a network simulator, a network monitor, and network nodes.
A backbone network is used for data communication among
network nodes and a network simulator. A control network is
used for that the network monitor oversees network nodes and
collects the variation of system resource of each network node
and the progress of the emulation.

OpenNetMon [5] focuses on monitoring in software-defined
networks. OpenNetMon configures OpenFlow switches with
forwarding and filtering rules and forwards packet flows to
multiple traffic monitoring systems, which calculate network
statistics such as bitrates, delays, jitters, and packet loss.
However, the workload of network monitoring increases as
virtual nodes increases because OpenNetMon collects network
statistics by polling the switches respectively and holds log
messages in a file.

WiNeTestEr [6] is a wireless network testbed that spe-
cializes in channel emulation. WiNeTestEr’s network monitor
oversees wireless network nodes as well as FPGA boards for
emulating channel conditions. The network monitor collects
experiment results from each network node and records the
results on a MySQL database server. The authors implemented
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TABLE I: Comparison of existing monitoring methods

Method How to monitor How to manage

OpenNetMon Active OpenFlow
switch APIs Local storage

WiNeTesEr Active Original library MySQL database
DevoFlow Passive Packet sampling Local storage
FlowMonitor Passive ns-3 APIs RAM

a logging library which records log messages of all software
modules of WiNeTestEr. The logging library outputs log mes-
sages to the standard output/error streams (stdout/stderr) and
a log file. Therefore, the logging mechanisms have negative
impacts on the performance of emulation as Ahmed et al. [7]
indicates that the performance of a MySQL server depends
on machine resources, selection of operating system, and
tuning of the kernel. Additionally, it takes high loads to write
enormous log messages to the standard output/error streams
and a file.

B. Passive monitoring

Passive monitoring refers to that a network monitor pas-
sively captures data traffic between network nodes or analyzes
reports of the simulation or experiment results. Fig. 2b shows
an example of passive monitoring on a emulated network.
In Fig. 2b, a network monitor knows the operation state of
network nodes and the progress of emulation based on log
messages of the operating system of the node and simulation
results such as the number of collisions of signals and the
path of moving network nodes. Passive monitoring does not
require many system resources and network resources, and the
workload of a network monitor is small because polling is not
used to monitor network nodes.

DevoFlow [8], a modification of the OpenFlow model,
improves the efficiency of network statistics collection by
sampling data packets. DevoFlow randomly chooses data
packets at a rate of 1/1000 packets and sends network statistics
calculated based on the packets to a network monitor using
sFlow [9], the standard for packet exporting. Therefore, De-
voFlow reduces the load of monitoring, however, it is difficult
to monitor network nodes continuously.

FlowMonitor [4], a flow monitoring module for ns-3 [11],
aggregates simulation results into XML trees and stores the
aggregated results on random access memory. However, it is
difficult to apply logging systems such as sampling-based log-
ging to wireless network emulation because the logging system
is realized by restricting the number of information sources.
Wireless network monitoring, especially VANET monitoring,
requires to monitor not only network statistics such as delays
and packet loss but also channel condition and the position of
wireless network nodes.

C. Requirements for VANET monitoring in network emulation

Active monitoring enables us to know the operation of
network nodes in real-time, While passive monitoring makes
it possible to monitor network nodes without degrading net-
work performance. However, active monitoring requires many

network and system resources. Passive monitoring has the
limitation of the kinds of collective information. On the other
hand, some popular open-source network monitoring systems
such as Nagios [12], Zabbix [13], and OpenNMS [14] supports
both active and passive monitoring. However, they require that
remote servers that respond requests from a network monitor
must be installed to network nodes respectively.

In VANET emulation, it is necessary to imitate traffic
flows of vehicles as well as characteristics of wireless com-
munication like radio propagation. Moreover, since V2V
communication is broadcast-based communication and the
topology of VANET always change because vehicles fre-
quently move, the scalability of VANET emulation is es-
sential. For example, the performance evaluation of V2V
communication management protocols such as ETSI DCC and
ATB requires macro-perspective monitoring that oversees all
communication-enabled vehicles to grasp the connectivity of
the vehicles.

On the other hand, the performance evaluation of V2V
systems such as Advanced Driver Assistance System (ADAS)
requires micro-perspective monitoring that watches specific
vehicles in a specific area like an intersection. The V2V
systems depend on many kinds of information such as the
sensing data and the position of vehicles, and the vehicles
move cooperatively by exchanging the information. Therefore,
it is essential for micro-perspective monitoring to collect
information as much as possible.

Based on the discussion above, we summarize realizing an
suitable network monitoring in VANET emulation follows:

1) Scalability and flexibility: Although there are some
differences in scalability required for VANET monitoring,
VANET monitoring should support both macro- and micro-
perspective monitoring for VANET emulation in various situ-
ations.

2) Small impact: Since VANET monitoring system should
manage a large amount of information, VANET monitoring
system should have a small negative impact on the resources
involved in VANET emulation to avoid the observer effect
because it may cause anomalous behavior. For example, it
is undesirable to read and write a file using filesystem I/O
frequently for logging the system status. In particular, since
our emulation framework can access the kernel and track the
control flows in network protocol stacks, it is necessary to
reduce the overhead of monitoring as much as possible.

3) Simple structure: Complicated network monitoring soft-
ware sometimes makes anomalous behavior that appears when
using the monitoring software. Simplifying the structure of
monitoring software is useful for developers and researchers
to debug and evaluate VANET and the other various network
applications and reduce monitoring workload.

4) Real-time monitoring: Since the state and the structure
of VANETs are always not constant, collecting feedbacks
during network emulation is useful to grasp the behavior of
VANET systems and detect issues and errors of the system in
running.
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III. WTAP80211-BASED WIRELESS NETWORK
EMULATION FRAMEWORK

In this section, we introduce the overview of wtap80211-
based network emulation framework.

A. Overview

wtap80211-based wireless network emulation framework
consists of wireless network tap device (wtap80211),
wtap80211 daemon, and a network simulator.

Fig. 3 shows the overview of the emulation framework that
emulates communication between an access point and a station
node. In the emulation framework, wtap80211 makes virtual
wireless network interfaces in the kernel when installed. Those
interfaces have the same APIs to Linux wireless subsystem as
real wireless interfaces. Linux wireless subsystem is a set of
kernel modules that controls and manages wireless devices
and communications, concretely, Linux wireless subsystem
executes processes defined in IEEE 802.11 MLME (Mac sub-
Layer Management Entity). Data packets that user applications
send are encapsulated into IEEE 802.11 frames by Linux wire-
less subsystem and the frames are handed over to wtap80211.

After receiving IEEE 802.11 frames from Linux wireless
subsystem, wtap80211 transfers the frames to wtap80211
daemon program. wtap80211 daemon, a daemon process in the
user space, transfers data received from wtap80211 to another
user application such as a network simulator after converting
the data format of them if needed.

A network simulator imitates the operation of carrier sens-
ing and the behavior of the physical layer such as transmission
and reception of signals by wireless communication equip-
ments, radio propagation, motility of wireless network nodes,
etc. Therefore, network applications running on the user space
and Linux wireless subsystem works in emulation, as with real
environments.

B. Wireless network tap device

A wireless network tap device (wtap80211) is a virtual
wireless network driver that supports IEEE 802.11a/b/g/n/ac
and IEEE 802.11p/ad and works as an interface between Linux
wireless subsystem and a user application. wtap80211 has a
function to exchange IEEE 802.11 frames and transmission
control and reception status information such as transmission
power, Basic Service Set (BSS), and Receive Signal Strength
Indicator (RSSI) with Linux wireless subsystem via kernel
APIs.

In addition, wtap80211 has another data path with user ap-
plications using Netlink [10], which is one of socket interfaces
and used for inter-process communication or communication
between a user application and a kernel module. Therefore,
wtap80211 transfers a Netlink message that includes trans-
mission control information such as transmission power and
frequency when receiving a control command from Linux
wireless subsystem, and wtap80211 notifies the change of
reception status such as RSSI to Linux wireless subsystem
when receiving the simulation results such as RSSI and BSS
information.
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Fig. 3: Detail of the architecture of our emulation framework.

wtap80211 and wtap80211 daemon exchange Netlink mes-
sages including IEEE 802.11 frames or parameters to control
wireless communication and devices. A Netlink message in-
cluding IEEE 802.11 frames consists of IEEE 802.11 frame
and either transmission control information or reception status
information. The transmission control information includes
transmission power, frequency, bitrate, and beacon interval.
The reception status information includes RSSI, reception
time, and the number of streams if either HT (High Throught-
put) or VHT (Very High Throughtput) mode is used.

A network message including parameters to control wire-
less communication and devices contains Basic Service Set
(BSS) information, channel switch data, configuration of the
devices. The channel switch data include the new channel
band and frequency to switch and timestamp of the data. The
configuration of the devices includes the status of hardware
switches, minimum threshold of transmission power, channel
frequency to tune in, and powersave timeout. When Linux
wireless subsystem or wtap80211 changed the parameters,
wtap80211 notifies user applications of the change of the
parameters via wtap80211 daemon.

C. wtap80211 daemon

wtap80211 daemon (wtap80211d) is a daemon applica-
tion that provides a function of data exchange between user
applications and wtap80211. The daemon provides user ap-
plications with multiple interfaces to make a connection to
wtap80211. Although network simulators that support net-
work emulation provide user applications with interfaces to
forward packet flows, the specifications of the interfaces are
different in each network simulator. Thus, the interfaces that
wtap80211 daemon provides user applications support socket
APIs, filesystem I/O and Netlink APIs.

The daemon decapsulates Netlink messages received from
wtap80211 and the content of each Netlink message to a user
application via the APIs. Since wtap80211 encapsulates IEEE
802.11 frames and control messages in Netlink messages and
sends them to wtap80211 daemon,
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IV. MONITORING SYSTEM FOR LARGE-SCALE
VANET EMULATION

In this section, we present the problems in monitoring with
wtap80211-based emulation framework and design an on-
memory logging system for wireless network emulation. For
reducing the overhead in monitoring such as file accesses as
much as possible, the logging system stores a large number
of log messages and simulation results in a ring buffer on
multiple shared memory blocks.

A. Problems of monitoring in wtap80211-based emulation
framework

Our emulation framework is susceptible to the observer
effect. We have confirmed that network applications, protocol
stacks including wireless LAN modules in an operating sys-
tem, and virtual wireless devices works in real time in [2]. In
the emulation framework, wtap80211 daemon collects many
kinds of information of use in the analysis of the behavior
of network nodes and the progress of network emulation.
Although the feature enables developers to simplify debug-
ging and the error detection of the software in running, the
processing load tends to concentrate at wtap80211 daemon.

Since our wireless network emulation framework accesses
data structures in the kernel to capture IEEE 802.11 frames and
collect information relevant to wireless LAN communication,
resource-hungry logging like dumping into a physical disk
deteriorates the performance of wtap80211 daemon and makes
the kernel be panic and crash at the worst. In general, the fre-
quent calls of the system call functions such as write() and
read() deteriorates the performance of processes because
such functions copy the content of memory between the user
space and the kernel space. Thus, reducing the number of
calls of the system call functions is effective to improve the
performance of wtap80211 daemon.

B. System overview

Fig. 4 shows the system overview of the designed monitor-
ing system. The monitoring system is installed to each host
with emulated network interfaces and consists of wtap80211
daemon, a logger process, and a ring buffer shared between
the daemon program and the logger program.

The data structure of buffer memory is typically designed
as a queue or a ring buffer. Since a ring buffer is fixed-size
buffer linked end-to-end, it reduces the memory consumption
if wtap80211 daemon writes enormous log messages to the
buffer. In addition, since the daemon can overwrite old log
messages with new ones, the daemon program can keeps
writing log messages to the ring buffer if all buffers are full
of messages. In contrast, a queue is FIFO (Fist-In-Fast-Out)
buffer. If the size of the queue is fixed, the daemon program is
blocked when the queue is full of log messages. If the queue
size is variable, the daemon can write log messages even when
the queue is full of other log messages. However, the variable-
size queue increases the memory consumption as the size of
log messages increases. Therefore, we use a ring buffer to
store log messages in the designed monitoring system.
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Fig. 4: Overview of the designed monitoring system.

The logger runs as a child process of wtap80211 daemon.
Since the child process has its memory fields independent of
the memory field owned by the parent process, the logger can
keep running even if wtap80211 daemon crashes and notify
an external monitor host of that the daemon has crashed.

wtap80211 daemon and the logger share a ring buffer
composed of multiple shared memory blocks for inter-process
communication between them. In the monitoring system, stor-
ing and passing log data are processed on the ring buffer only.
wtap80211 daemon stores log messages including captured
IEEE 802.11 header and payload size, information relevant
to wireless LAN communication and the simulation results to
the ring buffer. The daemon should not store the content of
the payload field of IEEE 802.11 data frames for saving the
capacity of the ring buffer.

The logger allocates heap memory fields, and copies log
messages stored in each shared memory block of the ring
buffer into the heap memory fields periodically, and backs up
log messages on a local disk in order of the timestamp. The
backup operations are performed in separate multiple threads.
However, if the ring buffer or the heap memory fields are full
of log messages, the logger immediately backs up the content
of the heap memory field to the local disk.

The logger sends log messages via socket APIs if an exter-
nal monitor host requests the messages. However, the logger
does not provide the database function because maintaining
a database during network emulation involves many system
calls. Since a system call leads to the context switches and
copying the content of memory between the user space and
the kernel space, many system calls deteriorate the system
performance. In addition, since the logger is installed on each
emulated network node, we need to manage multiple databases
if each logger uses a database.
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C. Mechanisms of on-memory logging with wtap80211 dae-
mon

Fig. 5 shows the detail of the ring buffer. The ring buffer
consists of buffer blocks and a sentinel block. Since the logger
process is tolerant of a failure of wtap80211 daemon, the
logger manages the ring buffer. A Buffer block includes a
semaphore, a pointer to the next block, and a storage field for
log messages. The sentinel block includes pointers to the next
writable or readable block and additional buffer blocks.

We allocate a small memory block for each shared memory
block except for the sentinel block to quicken the memory
I/O access. The buffer block size, 4 KiB, is determined as
the same as the typical page size of memory on general 64-
bit computers. The reason why we do not allocate a large
sequential block is to shorten the blocking time to synchronize
the content of the buffer blocks with the heap memory of
the logger. If a large amount of buffer block is allocated
at once, the writing operation is blocked every time the
semaphore blocks the operation of reading log messages from
the buffer block. While the logger is copying the content of the
buffer block, the blocking time becomes longer as the amount
of logging data increases. Since wtap80211 daemon records
enormous log messages that include IEEE 802.11 headers and
payload size, the increase of the blocking time is not ignorable.

The sentinel block has multiple additional buffer blocks to
reduce the possibility of overwriting the content of buffer
blocks in the ring buffer. wtap80211 daemon writes log
messages to the additional buffer blocks if all buffer blocks
on the ring buffer are not writable because all buffer blocks
are full of log messages or the logger locks the semaphore to
read log messages. The logger inserts additional buffer blocks
at the tail of the ring buffer when the writing process catches
up the reading process, or the existing buffer blocks are full
of messages.

V. CONCLUSIONS

For large-scale vehicular network emulation, we designed
a system for tight physical integration of network nodes,

network simulator, and traffic simulator like a driving sim-
ulator. We discussed issues in the monitoring of large-scale
emulated wireless network including VANET and presented
the design of an light-weight on-memory logging system using
a wireless network tap device and wtap80211 daemon. The
logging system stores many log messages of an operating
system and simulation results on a ring buffer on shared mem-
ory. Therefore, the logging system reduces the overhead of
logging and the negative impact on the behavior of monitored
processes. In addition, other techniques such as tuning the
kernel parameters can be applied for further improvement of
memory access performance.

In this paper, we focus on monitoring network nodes and
a network simulator. However, controlling network nodes
connected to the network simulator is also required in practice.
In future work, we expand the monitoring system to support
to control network nodes and the network simulator, and
implement the designed system in the Linux operating system
and evaluate the performance of the system.
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