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Abstract—C.elegans is one of the most important model
organism in neuroscience. We can measure neural activity
by brightness of cells, and operate each cell activity by
light projection. A robotic microscope, which can project
light on single cell in C.elegans, has been developed. In
this paper, we propose a tracking method on multi cells.
The proposed method achieves individually measuring cells
brightness in the video. Using a robot microscope, we can
also get stage trajectory. Cell brightness depends on it
activity, so it can be helpful for analyzing neural activity.
In the future work, we will achieve project on multi cells
to stimulate and measure each cell brightness and stage
trajectory at the same time to analyze its activity.

Index Terms—C.elegans, Optogenetics, Robot micro-
scope

I. INTRODUCTION

In the neuroscience field, C.elegans is widely used
as model organisms to observe the relationship between
neural activity and behavior of living organisms [1].
C.elegans have been elucidated its cell lineage from
fertilization to adults, the base sequence of the entire
genome, and the network of neural circuits.

Optogenetics is the one of methods to manipulate
neural activity [3]. In optogenetics, we observe the
neural activity when light stimulation is applied to
specific neural cells for a specific time. As advantages
of optogenetics, it has a superior spatial resolution that
can stimulate cells one by one and a time resolution
that can be swapped on and off of stimulus in units of
milliseconds. Kocabas et al. [4] clarified changes in the
direction of progression when photostimulation is given
to AIY of C.elegans using optogenetics. Tanimoto et al.
[5] developed a robotic microscope, Optogenetic Stimu-
lation Associated with Calcium Development of imaging
for Behaving Nematode (OSaCaBeN), and clarified cor-
respondence between feeding behavior of C.elegans and
responses of four dopaminergic neurons. OSaCaBeN can
automatically track the moving C.elegans cells at high
speed and stimulate a specific neural cell by projection

Fig. 1. A bright-field image of C. elegans (wild-type N2 strain)
observed by a stereomicroscope (SZX16, OLYMPUS). Magnification
of a lens is 8x. [2]

mapping. However, OSaCaBeN can project on only one
cell.

In this paper, we propose a tracking method for
multiple cells to realize measuring cells brightness.
Combining with a robot microscope, we can also get
stage trajectory. Our laboratory has worked on track-
ing animal motion, such as bats [6], and developed
a robot microscope system and applied for C.elegans
[2], paramecium [7] and zebrafish [8]. Fig, 2 shows a
schematic diagram of a fluorescent microscope system.
Our system has a high-speed CMOS or CCD camera
for bright-filed images and an EM-CCD camera for flu-
orescence images. It is difficult to distinguish multi cells
from the shape since fluorescent cells to be tracked have
similar elliptical shapes in every cell. In addition, since
the brightness of fluorescent cells changes according to
the activated state, it is difficult to track using a single
template. Therefore, we use features that do not change
significantly between 2 successive frames to correspond
cells between 2 frames. The features are the area and
brightness of each cell, and the geometric features of
the polygon whose vertices are the cells to be tracked.

II. PROPOSED METHOD OVERVIEW

In this paper, we use fluorescent protein transgenic
cells and an EM-CCD camera. The number of modified
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Fig. 2. A schematic diagram of a fluorescent microscope system to
track a particular region of C. elegans. An excitation light is applied
to C. elegans on an electric XY Z stage. The fluorescence images are
captured by an EM-CCD camera. We determine a control signal to the
XY Z stage based on an image processing result in a PC. [2]

Fig. 3. Proposed method overview. There are 2 stages: cell detection
and cell identification. In cell detection step, we binarize the image by
an appropriate threshold estimated automatically. In cell identification
step, we compare a current frame with a previous frame to find cell
correspondence between 2 frames.

cells is known. The overview of the proposed method
is shown in Fig. 3. In proposed method, tracking is
performed in two stages, namely cells detection and
cells identification. In cells detection stage, we use
binarization by a brightness threshold. The threshold is
automatically estimated from the video. In cells iden-
tification stage, we compare a current frame, which
has no identified cells, with a reference frame, which
has identified cells. The reference frame has 2 types: a
previous frame and a template frame. The previous frame
is 1 time step before the current frame. The template
frame is selected by the user. It is used to identify the
cells when the tracking is temporarily lost, such as the
cell deviating from the field of view. After identification,
we can obtain mean brightness of each cell individually.
We use a rectangle window to clip a cell. The window
size is decided based on cells in the template frame and
fixed through the video.

Fig. 4. Determination of brightness threshold. In each image, the left
side is a binary image, and the right side is the image extracted only
the area having the brightness not less than the threshold. The mean
of the brightness of the region remaining after binarization is used as
a new threshold, and a threshold for retrieving only cells are extracted.

III. CELL DETECTION

We estimate the brightness threshold suitable for cell
detection for gray scale image and perform binarization
processing. Areas having a brightness not less than the
threshold value is determined to be a detected cell.

Fig. 4 shows how to update the threshold. At first,
binarization is performed on all the images in the video
with the mean of all pixel brightness. Second, update
the threshold with the mean of the brightness of the
pixels having the brightness not less than the threshold
value. Third, Binarization processing is performed on
all the images in the video with the updated threshold
value. We repeat the second step and the third step until
the number of detected regions reaches the maximum
threshold not lower than the known number of cells to
get the threshold.

IV. CELL IDENTIFICATION

Fig. 5 shows cell identification overview. To identify
cells in the current frame, we compare the reference
frame and the current frame. The reference frame has
2 types: a previous frame and a template frame. When
two or more cells are detected in a frame 1 time step
before the current frame, the previous frame is used as
the reference frame. In other cases, the template frame,
which is selected by the user, is used. We suppose there
are at least two cells detected in one frame. We call these
two cells as pivot cells. Our method removes tracking of
cells if there are fewer than 2 cells detected. We consider
cells as a polygon, each cell corresponds to each vertex.
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Fig. 5. Cell identification overview. At first, we find and identify pivot
cells, which are landmarks to find cells to be tracked. Second, we use a
polygon whose vertex are corresponding to cells in the previous frame.
By matching the polygon to the pivot cells in the current frame, we
can identify cells. Third, we swap the pivot cells on purpose to confirm
identification was correct or not.

By calculating the ratio of pivot cells distance in the
reference frame and the current frame, we can get similar
polygons. Matching the polygon in the reference frame
with the polygon in the current frame, we estimate the
position of cells in the current frame. Moreover, in order
to prevent the pivot cell from swapping, it is judged
which is more appropriate as compared with the case
where pivot cells are intentionally swapped.

A. Pivot cells decision

Pivot cells candidates are combination to take two
cells from the current frame. At first, remove the can-
didates which has larger pivot cells distance than a
threshold. Among left pivot cell candidates, a candidate
in which the sum of the area and brightness of the
normalized cells is the largest is regarded as pivot cells.
Pivot cells in the current frame are written as

Pcur = arg max
{k,l}

ak + al
max
i∈Qcur

ai
+

bk + bl
max
i∈Qcur

bi
, (1)

|dkl − dref | < dthresh, k ̸= l

where Qcur is the set of cells in the current frame,
ai is area size and bi is brightness of cell i ∈ Qcur and
dkl is the distance between cell k and cells l, dref is the
distance between the pivot cells in the reference frame,
dthresh is a constant value.

B. Pivot cells identification

By Calculating a cost to correspond the reference
cells and the current cells and minimizing the cost, we
identify the pivot cells in the current frame.

Fig. 6. Pivot cells decision. We find pivot cells in the current frame
according to the pivot cells in the previous frame, using 3 features: i)
a distance between pivot cells, ii) area size, iii) brightness.

1) When the reference cells are cells of the previ-
ous frame: Calculate combinations that minimize the
weighted sum of the three types of costs. The three
kinds of costs C1, C2, C3 are calculated based on the
moving distance of the cell, the difference of area and
the difference of brightness, respectively. Fig. 7 shows
an example of pivot cell identification.

Let k be a cell belongs to the pivot cell in the reference
frame and l be a cell belongs to the pivot cells in the
current frame. The cost C1 about cell k and cell l, based
on moving distance, is written as

C1(k, l) =
dkl

max
i∈Pref ,j∈Pcur

dij
(2)

where Pref is the pivot cells in the reference frame, Pcur

is the pivot cells in the current frame and dij is the
distance between cell i and cell j.

The cost C2 about cell k and cell l, based on differ-
ence of area, is written as

C2(k, l) =
|ak − al|

max
i∈Pref ,j∈Ptar

|ai − aj |
(3)

Where ai is an area size of cell i.
The cost C3 about cell k and cell l, based on differ-

ence of brightness, is written as

C3(k, l) =
|bk − bl|

max
i∈Pref ,j∈Ptar

|bi − bj |
(4)

Where bi is a brightness of cell i.
The cost to correspond cell k with cell l is written as

C(k, l) = w1C1(k, l) + w2C2(k, l) + w3C3(k, l) (5)

Where w1, w2, w3 are constant values.
2) When the reference cells are cells of the template

image: Calculate combinations that minimize the cost
C2. Since the area of the cell does not change so much
but brightness changes greatly, only area size is used as
a feature to identify the pivot cell.
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Fig. 7. Pivot cells identification. There are 2 candidates to correspond
cells in the reference frame with cells in the current frame. One
is {(A, a), (B, b)} and the other is {(A, b), (B, a)}. We adopt the
combination has smaller cost. In this example, {(A, a), (B, b)} is
suitable

Fig. 8. Cells identification. Adopt a polygon whose vertex are the
cells in the reference frame to the current frame and search nearest
neighbor cell of the vertex.

C. Cells identification

Calculate the ratio of the pivot cells distance in the
reference frame to the pivot cells distance in the previous
frame, and create a similar polygon having cells in the
reference frame at the vertex. Let this polygon be a
reference figure. Place the reference figure so that the
vertex corresponding to the pivot cells in the reference
figure coincides with the pivot cells in the previous
frame. By searching the vicinity of the vertex of the
placed reference figure, identification other than the pivot
cell is performed. If the nearest neighbor cell of the
vertex of the reference figure is within the threshold
distance, the cell is identified as being identical to the
cell corresponding to the vertex of the reference figure.
When there are no cells within the threshold pixel, the
position of the apex is estimated as the position of the
cell. Fig. 8 shows an example of cell identification.

Fig. 9. Prevention of pivot cells swapping. In order to prevent pivot
cells swapping, when we couldn’t find cells except for the pivot cells,
we swap the pivot cells on purpose and search cells again.

D. Prevention of pivot cells swapping

In order to avoid the pivot cells identification failure
and swapping of the two pivot cells, if the number of
cells could not be found is larger than the number of cells
found near the vertex, we swap the pivot cells to apply
the reference cells and search for cells near the vertex.
However, even if swapping pivot cells, if there are many
numbers that could not be found than the number of cells
found near the vertex, adopt the state before swapping.
Fig. 9 shows an example of pivot cells swapping.

V. RESULT

Cell tracking was performed on seven videos. Some
of the results are shown in Fig. 10 and Fig. 11. Table
II shows the tracking success rate of cells in each video
by visual evaluation. A frame in which there is no error
in detection and identification of cells to be tracked
within one frame is regarded as a successful frame and
the ratio of the number of successful frames to the
total number of frames of the moving image is taken
as the tracking success rate. Except for video 2, we
can Successfully determine the threshold by automated
binarization and achieve high tracking success rate.
Propose method failed tracking ,especially in video 2,
when the brightness of the entire image is low except
for one cell, and tracking success rate is low because it
is difficult to separate foreground and background.

Fig. 12 shows mean brightness of each cell in each
video. After identification, we can get these data. Some
of the data may not be correct because of tracking
failure. We use a rectangle window to clip a cell. The
window size is decided based on cells in the template
frame and fixed over the video. Using a robot micro-
scope [2], stage trajectory is also available as you can see
in Fig. 14. The stage was controlled to cancel C.elegans
motion and keep its head under the microscope. Thus,
stage trajectory represent C.elegans motion. Raw data
has time-stamps for every plots. At present, we couldn’t
correspond brightness data with trajectory data.

We compare propose method with DeepLabCut
(DLC) [9], which is a toolbox for markerless pose
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TABLE I
IDENTIFICATION SUCCESS RATE

Number of frames Identification success rate (%)
Video1 149 100
Video2 59 62.7
Video3 59 100
Video4 59 91.5
Video5 79 100
Video6 79 100
Video7 59 96.6
Total 543 94.7

TABLE II
COMPARISON BETWEEN OUR METHOD AND DLC

Number of frames DLC success rate (%) Our method success rate (%)
Video1 109 81.7 100
Video2 43 93.0 76.7
Video3 43 88.4 100
Video4 43 100 90.7
Video5 58 86.2 100
Video6 58 94.8 100
Video7 43 58.1 100
Total 397 85.6 96.5

estimation of animals performing various tasks using
deep learning. We use 149 images from 7 videos to
train DLC and compare propose method with DLC on
397 images, which are not used for train DLC. Table ??
shows comparison between our method and DLC. Defi-
nition of success is same as Table II. While our method
fail because binarization failed, DLC successfully track.
However, our method achieve better result than DLC
about total success rate.

Fig. 10. A part of a result in Video1. It worked successfully.

Fig. 11. A part of a result in Video2. Tracking failed on the top
two images. Since the brightness of the entire image is low except
red cells and it is difficult to separate foreground and background.,
tracking success rate is low.

Fig. 12. Mean brightness of each cell in each video. Cell A/B/C are
corresponded to red/green/blue windows in Fig, 10 and Fig. 11.
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Fig. 13. x axis and y axis on the stage.

Fig. 14. Stage trajectory in each video. Raw date has time-stamps for
every plots.

VI. CONCLUSION

In this paper, we proposed a tracking method for
tracking fluorescent cells of C.elegans. By using features
that do not change with the passage of time, such as
the geometrical positional relationship between cells,
we achieved tracking distinguishing between cells that
change in shape and brightness. By binarizing the image
using the threshold estimated from the video, the cell
was detected and tracking was performed by using the
two cells that are reliably detected and the polygon made
by the cell. We succeeded in cell tracking except when
the tracking target goes out of the screen or when it
is difficult to separate the foreground and background
by binarization. After identification, we can get mean
brightness of each cell and stage trajectory.

In the future work, we will experiment with actual
C.elegans, project light on each cell to stimulate and
measure their brightness and analyze C.elegans activity.
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