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Abstract—The recent rise of the Quantified Self movement 

has witnessed a significant increase in the adoption of consumer 

wearable wristbands for sleep tracking. Nevertheless, data 

quality of these devices has been a main concern. This study 

aimed to validate a most popular consumer wristband, i.e. Fitbit 

Charge 2TM, against medical devices. We proposed a new 

validation approach that combines numerical technique with 

visual aid for epoch-by-epoch comparison on sleep stages. We 

found that Fitbit Charge 2TM had low accuracy in detecting wake 

and reasonable accuracy in detecting light, deep, and REM sleep 

stages. The visual aid of scatter plots showed that Fitbit was more 

accurate in detecting deep sleep stage in the first half of a night 

and more accurate in detecting REM sleep stage in the second 

half of a night. Our results indicate that consumer wearable 

wristbands are not able to produce high quality data of sleep 

stages in ecological settings. Future studies should consider the 

effect of time on device accuracy and may resort to segmented 

modelling techniques to improve data quality.  

Keywords— wearable wristbands, data quality, sleep, validation, 

Fitbit, data visualization 

I. INTRODUCTION 

The flourish of the consumer wearable market and the rise 
of the Quantified Self movement have led to a sharp increase in 
the number of adopters who use consumer wearable devices to 
track various physiological and psychological metrics [1-3]. In 
the meanwhile, these devices are also becoming popular among 
researchers because they enable longitudinal and cost-efficient  
data collection in ecological settings [4-6]. Nevertheless, the 
data quality of these consumer devices has been a main 
concern for end users who aim to gain insights from their data 
and for researchers who plan to use these devices in scientific 
studies [5, 7-10]. To this end, data quality is key to the 
sustained and large-scale adoption of these technologies [9]. 

In this paper, we aim to validate a most popular and recent 
consumer wristband, i.e. Fitbit Charge 2TM, in measuring sleep 
stages under free-living conditions. Many validation studies 
have endeavored to establish the discrepancy between 
consumer wristbands and clinical sleep monitors based on 
epoch-by-epoch (EBE) comparison. However, the majority of 
these studies only investigated device validity in wake/sleep 
classification based on sensitivity and specificity [11-13]. 
There has been solely one study investigating device accuracy 

in classifying all four sleep stages [13], as the feature of 
detecting light, deep and REM sleep has only become available 
very recently in the latest Fitbit models. Nevertheless, this 
study was conducted in a sleep laboratory. Previous validations 
studies on clinical actigraphy suggest that device accuracy 
under free-living conditions may deviate from that in 
laboratory settings. Hence, there is still need to examine the 
performance of Fitbit in classifying sleep stages in home 
settings.  

In this study, we followed the common practice in the field 
and conducted epoch-wise comparison between Fitbit data and 
medical data. We calculated a confusion matrix to demonstrate 
the capability of Fitbit in classifying wake, light sleep, deep 
sleep, and REM sleep. Assuming that device validity relies on 
the characteristics of the underlying phenomenon being 
measured, we were also interested in understanding the effect 
of time on data quality throughout the course of one night. 
Human sleep demonstrates temporal patterns. The amount of 
deep sleep epochs decreases throughout night while the 
number of REM sleep epochs increases. Nevertheless, previous 
validation studies generally consider device accuracy as a static 
property. Since temporal information is lost in these validation 
studies, it remains unknown as to whether and how data quality 
depends on the time of the measuring. We approached the 
problem from an unconventional perspective, as traditional 
validation techniques such as Bland-Altman plots or t-test do 
not server our purpose of exploring the temporal pattern of 
information quality in sleep tracking [14, 15]. We drew 
inspiration from the latest advance in data visualization [16, 
17] and used visual aid to uncover the temporal patterns of data 
quality. By converting the sleep hypnograms of a cohort into 
color spectrums and then segmenting the spectrum into sleep 
cycles, we obtained powerful visual cues to probe the accuracy 
of Fitbit in different sleep cycles.  

The contribution of this study is two-fold. First, we 
proposed a new validation approach that uses data visualization 
to complement the numerical approach that has been routinely 
used in validation studies. This new approach allows us to 
observe the temporal patterns of device accuracy throughout 
the course of one night. Second, we offer new insights into the 
validity of Fitbit Charge 2TM compared to medical devices 
under free-living conditions. The rest of the paper is organized 
as follows. Section II provides a summary of related work on 
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sleep analysis in clinical settings and previous validation 
studies of consumer sleep tracking devices. Section III and IV 
present the proposed methodology and the corresponding 
results. In Section V, we interpret the numerical and visual 
results within the landscape of consumer sleep tracking devices. 
The whole paper is closed in the conclusion. 

II. RELATED WORK 

A. Sleep Analysis in Clinical Settings  

Human sleep can be measured both subjectively and 
objectively. Subjective sleep quality is usually measured using 
established questionnaires such as the Pittsburgh Sleep Quality 
Index (PSQI) [18] and Sleep Disorder Questionnaire (SDQ) 
[19]. Objectively sleep quality can be measured by 
polysomnography (PSG), portable EEG, or actigraphy. PSG 
has been considered the gold standard in measuring human 
sleep. A PSG test measures multiple channels of biosignals 
such as cortical EEG, muscle tone (EMG), and eye movement 
(EOG). These data need to be analyzed by a trained technician 
following well-defined protocol [20]. First, biosignals are 
divided into short intervals called epochs. The common 
practice is 30 seconds [20], though it is possible to choose 
other length depending on the purpose of the analysis. Second, 
the technician visually inspect all signals to infer sleep stage 
epoch by epoch. Third, the epoch-wise results are summed up 
to produce aggregated outputs including total sleep time (TST),  
sleep onset latency (SOL), wake after sleep onset (WASO), the 
number of awakenings (NAWK), sleep efficiency (SE), and the 
ratio of each sleep stage [21]. It is worth noting that sleep 
scoring involves certain degree of subjectivity and the average 
inter-scorer agreement is approximately 82.6% [22]. 

Despite of its accuracy, PSG requires the use of bulky 
devices and constant technical support. The test is also 
expensive and uncomfortable for patients. Hence alternative 
devices have been developed for measuring sleep in clinical 
settings. The most notable ones are portable EEG and 
actigraphy, which have been widely used in sleep studies and 
tests in daily life settings. A portable EEG device consists of a 
cubed device body and several gel-type electrodes to be 
attached to the head of a user. These devices are simplified 
version of the EEG device in PSG in that they usually have 
fewer channels. Nevertheless, these devices are much less 
intrusive and requires no special setups. In comparison, 
actigraphy is a wristband worn on the non-dominant arm of a 
user. While EEG relies on the measurement of brainwaves, 
actigraphy infers sleep from movement based on data collected 
by an embedded accelerometer and has been widely used to 
capture sleep patterns spanning over multiple days in 
ecological settings [23, 24]. Several studies have validated that 
portable EEG and actigraphy are reasonably accurate compared 
to PSG [23, 25-28]. 

B. Validation of Consumer Sleep Tracking Devices 

Many studies have examined how users interact with 
consumer sleep tracking devices (including wearable 
wristbands and wearable EEG) and how they interpret sleep 
data from these devices [4, 5, 9, 29-32]. Fitbit devices have 
also been used in many scientific studies where the measuring 

of sleep was not the main focus. These studies found that data 
quality is a main issue that impede individual users from 
gaining insights into their sleep patterns [7-9, 31] and prevent 
researchers from drawing rigid conclusions from their studies 
[4, 5, 10].  

Given that many consumer devices are not validated [33, 
34], there is increasing interest in research community to 
understand the validity of these devices. Table I summarizes 
the main findings in previous validation studies of Fitbit 
devices. These studies all relied on numerical approaches, 
based on either aggregated comparison or epoch-by-epoch 
comparison between consumer devices and medical devices. 
These studies indicate that the accuracy of Fitbit devices has 
been greatly improved since its first model. Validations on 
aggregated sleep metrics (i.e. TST, WASO, SOL, SE) have 
shown that the latest model has good accuracy on NAWK and 
SE, but not on other metrics [6, 11, 35, 36]. Epoch-by-epoch 
validations demonstrate that Fitbit devices generally have high 
accuracy in detecting sleep epochs but low accuracy in 
detecting wake epochs [6, 13, 35-37]. This characteristic is 
consistent with clinical actigraphy [23, 38-42].  

TABLE I.  SUMMARY OF PREVIOUS VALIDATION STUDIES ON FITBIT  

Device 

Model 
Aggregated Validation 

Epoch-by-Epoch 

Validation 

Fitbit 

FlexTM 

Overestimation of TST 
by 46min and SE by 

8.1%. Underestimation of 
WASO by 44min [35]. 

High sensitivity and 

accuracy above 0.80, with 
low specificity lower than 

0.40 for both healthy 
people and people with 

chronic disorders [35, 37]. 

Fitbit 
UltraTM 

Overestimation of TST 

by 41 min and SE by 8%. 
Underestimation of 

WASO by 32min [36]. 

Good overall accuracy of 

0.84 and sensitivity of 
0.86, but poor specificity 

of 0.52 [36]. 

Fitbit 
Charge 

HRTM 

Overestimation of TST 

by 8min and SE by 1.8%. 

Underestimation of 
WASO by 5.6min [6].  

High overall accuracy 
0.91, high sensitivity of 

0.97, and low specificity 

of 0.42 based on 1min-
epoch analysis in lab 

settings [6]. 

Fitbit 

Charge 2TM 

No significant difference 

on NAWK and SE. 

Overestimation of 

WASO by 24.5min and 
deep sleep by 39.8min. 

Underestimation of TST 

by 12.3min, SOL by 
11.1min, light sleep by 

42.4min, and REM by 

11.6min [11].  

High sensitivity of 0.96 

and reasonable specificity 
of 0.61 based on 30s-

epoch analysis in lab 

settings. Accuracy for 
“light sleep”, “deep sleep” 

and “REM” sleep were 

0.81, 0.49, and 0.74 
respectively [13]. 

 

III. METHODOLOGY 

A. Numerical Approach 

As illustrated in Fig.1, we conducted epoch-by-epoch 
comparison between Fitbit sleep data and medical data due to 
the epoch-wise nature in standard sleep scoring process in 
clinical settings [20]. A Fitbit Charge 2TM and a medical device 
need to be used concurrently to measure sleep from a cohort of 
participants. To enable direct comparison between the two 
devices, we first unified a mapping scheme between Fitbit 
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sleep data and medical data. The “light sleep” in Fitbit data 
corresponded to “stage N1” and “stage N2” in the medical data, 
“deep sleep” corresponded to “stage N3”, “REM sleep” 
corresponded to “stage R”, and “wake” corresponded to “stage 
W”. Following the common practice in validation studies [13], 

a 4×4 confusion matrix was calculated for each subject and 

then averaged over the whole cohort. The confusion matrix 
represents a cross-tabular of 4 rows containing each sleep stage 
classified by the medical device versus 4 column containing 
the corresponding sleep stage classified by Fitbit Charge 2TM. 
The diagonal values represent device accuracy in classifying 
each sleep stage. Sensitivity and specificity were also 
calculated to indicate the ability of Fitbit in correctly detecting 
sleep epochs and wake epochs respectively.  

 

Fig. 1. Epch -by-epoch comparison between Fitbit data and medical data. 

  

  

(a) 

           

(b) 

Fig. 2. Scatter plots showing agreement between Fitbit and medical device 

through a night. The x-coordinate indicates the elapse of time by epoch and 

the y-coordinate represents the ground truth measured by medical device. (a) 
An ideal scenario where Fitbit matches medical device perfectly; (b) a 

realistic scenario where Fitbit frequently misclassifies sleep stages. 

B. Visual Approach  

We used scatter plots to visually inspect the accuracy of a 

consumer device in measuring sleep stages throughout a night. 

As depicted in Fig. 2, the x-axis is the number of epochs 

elapsed, and the y-axis represents the ground truth measured 

by a medical device. The sleep stages detected by Fitbit 

Charge 2TM were color-coded. As is shown in Fig.2, red dots, 

green triangle, blue square and purple cross were used to 

indicate deep sleep, light sleep, REM sleep and wake 

respectively. Fig.2 (a) illustrates ideal situation where Fitbit 

agrees perfectly with the medical device. The color spectrums 

of wake, light sleep, deep sleep and REM sleep are in single 

color of purple, green, pink and blue. In contrast, Fig.2 (b) 

demonstrates a practical scenario where Fitbit misclassifies 

sleep stages. The misclassification of Fitbit produced colorful 

spectrums.  

IV. RESULTS 

A. Dataset Preparation 

We collected sleep data from 22 participants using a Fitbit 
Charge 2TM and a medical-grade portable 1-channel EEG 
device concurrently. Participants measured their sleep for one 
night using both devices in their own homes. We conducted 
data collection in daily life settings to ensure that our validation 
results reflect the performance of the wristband in natural 
living environment. We retrieved intra-day sleep data at the 
resolution of 1s from Fitbit through their partner API using a 
Chrome extension called Postman Interceptor. This data and 
the medical data were synchronized to make sure that the start 
time was aligned. Subsequently we developed a C# script 
program to aggregate the Fitbit data into 30s epochs (i.e. 
averaged every 30s). The medical data was first analyzed at 
30s-epoch by a validated proprietary sleep scoring software. A 
sleep expert then visually inspected the results and added 
necessary modification following established sleep scoring 
standard [20]. The total sleep time of the cohort ranges from 4 
hours (480 epochs) to 9.8 hours (1176 epochs). The whole 
dataset contains 18759 records in total. Each records contains 
the following three fields: epoch number, sleep stage measured 
by Fitbit, sleep stage measured by medical device.  

B. Sensitivity and Specificity 

TABLE II.  CONFUSION MATRIX  

  Fitbit Charge 2TM 

  Wake Light  Deep  REM 

Medical 

Device Wake 
0. 38±

0.20
a
 

0.48 ±
0.19 

0.06 ±
0.11 

0.08 ±
0.07 

Light 
0.03 ±
0.02 

0.69 ±
0.08 

0.22 ±
0.70 

0.06 ±
0.06 

Deep 
0.03 ±
0.11 

0.30 ±
0.24 

0.64 ±
0.30 

0.03 ±
0.08 

REM 
0.05 ±
0.06 

0.32 ±
0.20 

0.03 ±
0.09 

0.60 ±
0.25 

a. The results are presented in the form of “average ± standard deviation”. 
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Wake 
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Light
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Wake 
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Light
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First Half of Night (Sleep Cycle 1-3)                                   Second Half of Night (Sleep Cycle 4-6) 

    

     

      

Fig. 3. Scatter plots of data during sleep cycle 1-6. The x-coordinate indicates the elapse of time by epoch and the y-coordinate represents the ground truth 

measured by a medical device. Left: first half of a night; Right: second half of a night. 

We conducted epoch-wise comparison to calculate the 4×
4 confusion matrix and the results are shown in Table II. The 

sensitivity of detecting sleep epochs and the specificity of 

detecting wake epochs are 0.96 and 0.38 respectively. 

C. Temporal Pattern of Data Quality 

We created scatter plots using a data visualization package 

named ggplot2 in R [16, 17, 43]. We divided the dataset into 

segments of 200 epochs, which approximates an average sleep 

cycle of 90 minutes [44, 45]. This allowed us to observe the 

plots at higher granularity. Consequently, we obtained six 

plots (Fig.3) demonstrating the agreement of Fitbit to medical 

device during sleep cycle 1~6. 

V. DISCUSSION 

We have presented the numerical results and the 
visualization of comparisons between Fitbit Charge 2TM and 
the medical device. In what follows, we discuss the 
interpretation of these results and the limitations of this study.   

A. Interpretation of Numerical Results  

The confusion matrix in Table II shows that Fitbit Charge 
2TM achieved mediocre accuracy in classifying all sleep stages.  
Compared to the medical device, 48% of wake epochs were 
misclassified as light sleep by Fitbit, which was even higher 
than the ratio of wake epochs corrected classified (38%). This 
echoes the low specificity of older Fitbit models identified in 
previous validation studies [6, 35, 37], and the result fits within 
the specificity range of 0.30-0.67 among studies validating 
standard actigraphy in health people [24]. Nevertheless, this 
result contradicts a recent validation study on Fitbit Charge 2TM 
by De Zambotti and colleagues [13]. The authors found higher 
specificity of Fitbit Charge 2TM (=0.61). The result was 
consistent between good sleepers and people with sleep 
problems. The discrepancy between our finding and this 
previous work could be explained by the differences in cohort 
characteristics and data collection protocol, and our findings 
complement this previous study by offering new insights into 
device accuracy in free-living conditions.  

Wake 

REM 

Light

 

Deep 

Wake 

REM 

Light

 

Deep 

Wake 

REM 

Light

 

Deep 

Epochs in sleep cycle 1 

Epochs in sleep cycle 2 

Epochs in sleep cycle 3 

Epochs in sleep cycle 4 

Epochs in sleep cycle 5 

Epochs in sleep cycle 6 
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Fitbit achieved better performance in detecting sleep stages, 
with classification accuracy all above 0.60 for light, deep, and 
REM sleep epochs. Still, 22% of light sleep epochs were 
classified as deep sleep, and 30% of deep sleep epochs and 
32% of REM sleep epochs were misclassified as light sleep. It 
seems to be easier to distinguish between deep and REM stages 
than to distinguish these two stages from light stage. These 
findings are largely consistent with the results in [13]. The 
function of Fitbit in detecting sleep stages has only become 
available very recently due to the integration of multi-stream 
biosignals from accelerometer and infrared heart rate sensor. 
Despite of the convenience for getting sleep stage information 
from Fitbit, our study suggests that such data may not be 
reliable and thus should be used with caution. We recommend 
future studies to focus on enhancing the accuracy of Fitbit in 
classifying sleep stages (including wake stage).  

B. Interpretation of Visualization 

Visual aid has been used in the assessment of sleep-staging 
algorithms in [46]. However, our study is the first attempt to 
leverage visual aid in the validation of consumer sleep trackers. 
The color spectrums in Fig.3 demonstrate the temporal patterns 
of Fitbit accuracy in measuring sleep stages. We did not find 
significant difference among six sleep cycles with respect to 
the accuracy of Fitbit in detecting wake and light sleep epochs.  
The difference mainly lies in the accuracy of deep and REM 
sleep. It is interesting to see that deep sleep epochs were more 
likely to be correctly detected during sleep cycle 1~2 (i.e. 
significantly higher portion of pink in the spectrum of “Deep”), 
whereas REM sleep epochs were more likely to be corrected 
detected during sleep cycle 4~6 (i.e. significantly higher 
portion of blue in the spectrum of “REM”). In other words, 
Fitbit Charge 2TM had better accuracy in detecting deep sleep 
during the first half of the night, while the accuracy in 
detecting REM sleep is better during the second half of the 
night. These temporal patterns of classification accuracy 
suggest that sleep staging algorithms should count in the effect 
of time and may even consider using segmented modelling 
techniques [47-49].  

C. Limitations 

This study has the following limitations. First, the data was 
collected only from a cohort of healthy young adults. The 
results thus may not be generalized to children or teenagers, 
older population, and people with chronic conditions. Second, 
the study design precluded the assessment of longitudinal 
performance of the device. Future studies are encouraged to 
establish evidence on the validity of Fitbit devices in 
measuring the sleep of various populations spanning over 
multiple days.  

VI. CONCLUSION 

We have presented our approach that combines both 
numerical techniques and data visualization in epoch-by-epoch 
validation of Fitbit Charge 2TM. We compared Fitbit sleep data 
with medical data collected concurrently from 22 healthy 
young participants. The numerical results suggested that Fitbit 
device produced reasonably good accuracy (>0.60) in 
classifying light, deep and REM sleep stages. Distinguishing 

between deep and REM stages was relatively easier than 
distinguishing these two stages from light stage. Similar to 
previous models, Fitbit Charge 2TM has poor specificity of 0.38 
in detecting wake. The challenge lies in differentiating wake 
from light stage, as 48% of wake epochs were misclassified as 
light sleep. As for the temporal patterns of device accuracy, 
data visualization using scatter plots revealed that Fitbit had 
better performance in detecting deep sleep in the first half of 
night, while the accuracy in detecting REM sleep was better in 
the second half of night. Our findings suggest that despite of 
using multiple sensing modalities, the ability of Fitbit in 
classifying sleep stages (especially wake stage) still remains 
limited. Therefore, users should count in these limitations 
when interpreting sleep data measured by these consumer 
devices.  
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