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Abstract—Towards IoT-enabled world, the response time
starting from data occurrence at the source until processed data
delivery to the actuator is another QoS metric to be concerned.
We call this requirement deadline. In coarse-grained stream
processing, we could partially drop data in the streams with
a specific drop rate to meet the deadline. This paper proposes
an autonomic sampling method to decide the drop rate aiming
at response time reduction oriented by the user-specified dead-
line. With consideration of processing and communicating time
sharing among distributed worker nodes, we calculate a sampling
number to satisfy the deadline requirement while preserving the
maximum drop rate. The device will set a goal to maintain this
sampling number for the next operating window. To evaluate
the performance, we have implemented the proposed method on
top of our previously-proposed stream processing engine called
EdgeCEP. The results present that our proposed method can
reduce almost 2-times latency and preserve a higher amount of
request outputs compared to the fixed rate approach.

I. INTRODUCTION

Driving a new era of life-quality services, stream pro-
cessing technology plays an essential role to extract useful
knowledge from overwhelming and never-ending streaming
data generated by IoT devices. With stream processing, you
can ask the system to monitor your house entrance for 24 hours
and automatically notify you at the moment when it found
strangers come around. From learning your daily-life habits, it
may be able to assist you to change your behavior and improve
your health. Individually, each processing application has a
different specified requirement of prospective result delivering
known as Quality of Service (QoS) [1]. Real-time applications
require processing within a short and stringent deadline. Some
of those are not concerned only about time-based metrics like
throughput and latency but also care the content-based values
such as result quality (accuracy), for example, aircraft control
systems. We consider this kind of processing as a fine-grained
type. To archive that, the straightforward way is increasing
the computational power of processors. Additionally, smart
scheduling and distributing processing tasks over multiple
computing modules is also a potential solution. On the other
hand, a coarse-grained stream processing has more flexibility
to adjust the sampling rate by ignoring some data to preserve
its deadline (latency), for example, video surveillance systems.

Since the 1990s, Quality of Service (QoS) has been
observed and studied starting from the field of telephony
and the data networking area. In the data-collecting system,
adaptive sampling method and load-shredding specification
are considered as potential solution techniques to maximize
the entire QoS property of networks [2] [3] [4]. In the same

way, both techniques are integrated into the stream processing
framework additionally to the scheduling module to improve
or guarantee user-specified QoS requirements. They are also
known as approximation techniques [5]. The basic idea is
to set the sampling rate that can minimize an error from
shedding real-time constraint [6]. Still, to guarantee on time-
based QoS, especially latency metric, for the whole path of
distributed stream processing faces an additional challenge due
to a communication gap between processors. Only a real-time
constraint at each node cannot guarantee the total latency of
processing and delivering at the final consumers.

In this paper, we point out the quality-improvement poten-
tiality of communication factors in the load shedding prob-
lem for coarse-grained stream processing across distributed
collaborative processors. We introduce an application-level
respond-time metric to determine the quality of service in
stream processing application. To handle fluctuation of data
flow as well as a communication link, we propose an au-
tomatic deadline-oriented sampling method implemented on
our previously-proposed EdgeCEP, a fully-distributed complex
event processing system [7] [8]. Responding to the feedback
from neighbor nodes, it computes the number of sampling
in a long-ranged window. During an operating time, the
sampling rate is adjusted to preserve the target sampling
number. Additionally, we modify the learning-based prediction
for processing time, previously-proposed in [9], to determine
the proper sampling number. According to the experimental
results, without shedding, and fixed-rate shedding incurs about
2s delay over 1s requirement with 0.5 accuracy threshold.
Meanwhile, the proposed method lets only 0.65s delay occur.

The rest of the paper is organized as follow. Section II gives
background knowledge and discusses related works. Section
IV introduces the EdgeCEP system and Section IV describes
the proposed method. Section V presents experimental settings
and results. Section VI states some remaining issues, and
finally, Section VII concludes the paper.

II. RELATED WORK

A technology to process continuous and timely flowing in-
formation, such as video stream, is well-known as information
flow processing or stream processing. Since 1988, numerous
general-purpose engines have launched in various manners
[10]. In common, we can categorize them from their processing
methods: either tuple-based or object-based. The former is
similar to the continuous database query and processing [11]
[12] while the latter is preferable for detection [13]. Formerly,
they are called Data Stream Management System (DSMS)
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and Complex Event Processing (CEP), respectively. However,
DSMS-originated tuple-based method is sometimes also called
CEP due to an enhancement of detection efficiency [14].
Recently, in our previous work, we propose a combination
approach, named EdgeCEP, to perform tuple-based CEP at
edge devices in a fully distributed manner [7] [8].

Since a decade ago, the Quality of Service (QoS) concept
comes up as an alternative feature in stream processing appli-
cations. In [5], the authors classify QoS metrics into two broad
aspects: time-based and content-based. The former includes
throughput and delay (latency) while the latter refers to drop
rate, sliding window size, approximation quality, and mining
quality. The definition of latency is limited to the time distance
from input arrival till output processed. The QoS-oriented
method could be either best effort or guarantee. The best-
effort approach tries to maximize quality value. Meanwhile,
the guarantee-approach further requires negotiation to obtain
the exact requirement satisfaction. Most of existing stream pro-
cessing engines support the best-effort QoS management with
various kinds of approaches. One solution is to optimize a task-
execution plan over a considerable number of processors run-
ning in parallel. The better plan usually reduces accomplishing
time and resource consumption. In EdgeCEP, we assign the
task with optimizing global flow volume. In Tasklet, system
users are allowed to provide resource requirements, such as
reliability and speed, for their task offloading [15]. Unlike
fine-grained processing tasks, where all data are significant,
coarse-grained tasks allow dropping some data in streams due
to an abundant amount or unneeded content. For such a kind of
tasks, there is further applicable solution called load shedding
for reducing the inputting data.

For load shedding, there are multiple ways of solutions.
Some prioritize the low-frequent streams over high-frequent
ones. For instance, ref. [3] modify a signal strength of transmit-
ter according to its flowing frequency. Also, we may prioritize
the data tuples by directly referencing to user-specific require-
ments of information, such as thematic and spatiotemporal
relevance [16]. Another technique is to sample the data streams
randomly. Ref. [17] introduces applying basic sampling tech-
niques such as Bernoulli and Reservoir. Bernoulli is faster
and simpler with a fixed sampling rate but cannot control
the variability of sample size while Reservoir controls the
sampling size instead. In [6], the sampling size is set to achieve
real-time constraints with minimum error. Additionally, the
paper introduces the algorithm to decide on shed-operator
positions overlaying an execution plan. Similarly in [18], the
Drop operators have been implemented in Aurora, one of well-
known stream processing engines. The drop operations can
be either random drop with a fixed rate or semantic drop
with utility determining. In [19], the sampling rate is adapted
exploiting fuzzy logic and regression techniques.

The contributions of this paper are summarized as follows:

1) We introduce a response-time metric of QoS in
stream processing to determine the time difference
starting from source, processing at processors, and
reaching the destination. We consider the deadline as
a requirement of this metric.

2) Considering both processing and communicating la-
tency, we approximate a target sampling number

Fig. 1: EdgeCEP Framework

aiming at deadline requirement, at the same time,
preserving the maximum drop rate requirement. Fur-
thermore, we exploit the learning-based model to
determine processing latency according to a variety
of processors, functions and inputting data.

3) We propose an autonomic adaptive sampling mecha-
nism controlling the number of sampling instead of
the sampling rate, and operating in a distributed way
through the feedback message.

4) We implement and evaluate our proposed method
in real devices on top of the EdgeCEP system.
The results show superior benefits over baseline (no
dropping) and fixed sampling rate method.

III. EDGECEP: FULLY-DISTRIBUTED COMPLEX EVENT
PROCESSING ON IOT EDGES

EdgeCEP has been developed as a general complex event
aiming at operating on smart IoT edge devices in self-
organized distributed manner [7] [8]. The framework is shown
in Fig. 1. Data to be processed in the systems are representing
as flows of Events. The specification of an event is pre-defined
and globally provided with definition, Name(Att1, ..., Attn),
by event composers (mostly considered as specialists). We
consider the events with detecting, processing, and producing
behaviors as Composite events, specified in the following
language structure.

define Name(Att1, ..., Attn) [aggr] [every T ]
< pre >∗

[case n:]
detect Pattern(content1, ..., contentm)
assign attr1 = f1, ..., attrp = fp; f = F (content)

[consuming e1, ..., eh; ei ∈ content]
< post >∗

where∗ Att1 = g1, ..., Attn = gn; g = G(attr)
[group by (location|srcid)]

∗only for aggregation specification (aggr)

We identify the detecting behavior with detect key which
consists of interest pattern of event contents. We identify the
processing behavior with assign key which consists of process-
ing function and input contents. For the producing behavior,
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Fig. 2: EdgeCEP Components

we describe producing and consuming policy with every and
consuming keys, respectively. The term “content” denotes
conjunction of events with values that satisfy the specific con-
ditions. For instance, the content, “Temperature.val > 40◦C”,
refers a “Temperature” event with a condition “val > 40◦C”.
Correspondingly, the temperature event with value more than
40◦, for example, 45◦, will be filtered in this content group.
Event composers can specify the detecting and processing
behaviors for the same subscription by multiple interest pat-
terns using the keyword case. For aggregation, there is an
aggregation keyword, that is aggr. If it is aggregation type,
the composers must separate the specification into two parts:
< pre > and < post > in the same way as the map and
reduce method.

Users of the system, subscribers, provide a set of con-
tinuous queries, called subscriptions, via the cloud server.
The specification structure of subscription is similar to the
composite event except for the define key. Instead of attributes,
we need to declare the requested title and actuator destination,
as follow:

subscribe T itle from UserID activate Actuator [aggr]
[every T ]

User-queried subscriptions can only refer to available event
definitions in the event repository, uploaded by event com-
posers. The cloud server will dispatch the valid subscriptions to
the network of collaborating EdgeCEP devices, called brokers.
Brokers could be wired or wirelessly connected to sensors
and actuators. Sensors sense surrounding environments while
actuators activate a corresponding action. In the same time,
they also act as distributed processing nodes. Note that, the
running results may be uploaded to the cloud for monitoring
by subscribers.

As an EdgeCEP broker, there are three functional modules
parallel operating inside the device, as presented in Fig. 2. The
content filterer module exploits the publish-subscribe mecha-
nism and hashing method to feed an event to the corresponding
agents in the task processor module, i.e., performing detecting
behavior. The task processor modules consist of multiple
processing agents. Each of them is responsible for generating a
composite event or producing an output of subscriptions. The
processing and producing operations perform here. The last
module, coordinator, is for monitoring runtime status, sharing

Fig. 3: Flow Shedding Concept

Fig. 4: Feedback Mechanism

that knowledge with its neighbors, and deciding on task pro-
cessing and forwarding plan to complete user subscriptions.

IV. AN AUTOMATIC DEADLINE-ORIENTED SAMPLING

For the filter-enabled systems like EdgeCEP, the sampling
should run after the filter operation due to the data flow
after filtering are supposed to be semantically equal. The
flow shedding concept is illustrated in Fig. 3. The proposed
method performs sampling decision in a distributed manner
using feedback control block from the further brokers. To
illustrate, in Fig. 4, the correct label subscription set actuator at
COM2 and the video frame stream is generated at COM1. As
a broker, COM1 decides to assign the FACE composite event
to itself and forward the rest processing to COM2. Then, it
automatically determines sampling number of FRAME based
on current latency which is estimated by self-observation and
future latency deriving from COM2’s LABEL feedback.

Fig. 5: Responsible Area for Latency Control at Individuals
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Fig. 6: Processing-Time Prediction Concept

Input: L,N , Nmax, lp, lc, lpast, lnext, ML(), Rth
Output: N
Ncandidate ← ROT(N, lp, lc)
Nmin ← (1−Rth)×Nmax

if ML(N, lpast, lnext, L)=satisfied then
N ← Ncandidate

else
N ← Nmin

end
Algorithm 1: Sampling Decision Procedure

A. Problem Definition

Suppose user specify deadline L for the response time
with maximum drop rate threshold Rth, the current total
latency, ltotal, can be estimated by summation of the following
values: (1) past latency, lpast, counting from source to arrival
at the considering node, (2) future latency, lnext, provided
from the next neighbor, (3) processing latency, lp, and (4)
communicating latency, lc (see Fig. 5). Provide function F (N)
and G(N) to determine lp and lc, respectively, from the
sampling number, N , out of total number, Nmax.

Find N that

ltotal(N) ≤ L subject to
N

Nmax
≥ 1−Rth

where ltotal(N) = lpast + lnext + F (N) +G(N)

B. Sampling Number Decision

The sampling number decision making will be performed
periodically with a specific time window following the proce-
dure in Algorithm 1. To decide the sampling number in each
window, we exploit the learning-based approach, proposed in
[9] for processing time functions. With the features processor,
function, and parameter, we can estimate whether the process-
ing time will satisfy the deadline constraints or not from the
sufficiently-learning model (Fig.6). The features of processors
and functions are mostly static except available memory and
parameter size. To reduce the computation time, we determine
the candidate number N from a simple computing function
using the rule of three (ROT). Then, we test the candidate
number, Ncandidate, with the learning model (ML). If it is
not satisfied, the minimum N will be computed from Rth and
potential maximum input Nmax.

C. Sampling Decision Procedure

Corresponding to the sampling number, N , the expected
sampling probability, Pexp, is N/Ntotal. A broker will decide
whether to sample each filtering-in event or not with this

Input: N , Pexp, Nleft, Ncur

Output: isSampled
if Rexp=∞ then

isSampled ← true
else if Nleft=0 then

isSampled ← false
else

Nsampled ← N−Nleft

curR ← Nsampled/Ncur

if curR < Rexp then
isSampled ← true

end
ramdom ← Random [0, 1]
if random ≤ Rexp then

isSampled ← true
else

isSampled ← false
end

end
Algorithm 2: Sampling Decision

probability. We present the decision procedure in Algorithm 2.
At each decision point, the recorded left quota, Nleft of N ,
and the current filtering-in number, Ncur, are available. If the
sampling probability is infinity owning to a long-enough dead-
line, it will always sample any incoming events. On the other
hand, if there is no left quota, it will reject all coming-after
events. For the rest cases, if the current sampling probability,
i.e., (N − Nleft)/Ncur, is lower than Pexp, the considering
event will be selected. Otherwise, it will be randomly picked
up with Pexp probability.

V. EVALUATION

We implement the proposed automatic deadline-oriented
sampling method on top of currently-developing EdgeCEP in
Java platform. The subscription is a coarse-grained type with
an additional attribute of quality requirement. We compare our
method with baseline without any sampling method (none),
and with fixed-rate sampling method (fixed). We set the
environments for evaluation with the scenario shown in Fig. 4.
The details are as follows.

A. Evaluation Setting

The subscription of correct label is represented in EdgeCEP
specification language as:

subscribe Correct Label from User1 activate COM2
detect Label.distance < 2000
assign CorrectLabel=Label
consuming Label

The function and processor features are listed in Table I,
referring to [9]. We set the deadline requirement at 1s and
create the connection between two processors with an ad-hoc
link. We apply MultilayerPerceptron (mlp) classifier function
to determine the satisfaction of processing time since it yields
the smallest root relative squared error according to the cur-
rent dataset. The paramSize and availableMem features will
be fulfilled at runtime. The recalculating window time for
sampling number decision is the 20s. The source stream is
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TABLE I: Processing-time Learning Features

Function Features Face Detection Face Recognition Basic Function
callCount 32 23 1
codelength 1,544 1,470 100
includedClassLen 28,420 91,844 8,570
varSize 608 608 32
Processor Features COM1 COM2
benchmarkTime 14,000 µs 11,731 µs
clockSpeed 2,600 MHz 2,900 MHz
CPUCore 8 4
Requirement Feature Correct Label
deadline 1000 ms
Input Features Video Stream
paramSize varied in runtime
availableMem varied in runtime

Fig. 7: Total Latency/Output for 8-windows run

almost-one-minute recorded video. The maximum drop rate is
0.5. The sampling probability of the fixed-rate method equals
to maximum drop rate.

B. Results

Fig. 7 presents the total response time (subscription la-
tency) result. The latency on each window piles up over time
since the without-sampling method (none) causes latency more
than real-time constraints. Meanwhile, with-sampling methods
(automatic and fixed) preserve a stable response time. The
proposed method (autonomic) gains the closest response time
to the user-specified requirement. It is over the deadline only
0.65s in average while none and fixed approaches are over
the deadline 1.18s and 2.16s, respectively. The accumulated
processing latency for each 20s window of each approach
is shown in Fig. 8. None approach takes almost 20s for
processing latency. Accordingly, this explicitly shows that
processors could not deal with the subscription in realtime
with the baseline approach.

time (µs) lc lc/lp
Autonomic Sampling Method 1,950 13.82
Baseline 2,404 24.92

TABLE II: Communicating time over Processing time(lc/lp)

Fig. 8: Accumulated Processing Latency for 8-windows run

Fig. 9: Accumulated latency at each processing point

Table II shows the relation between communicating latency
and processing latency derived from the experiment. Auto-
nomic sampling can reduce the communicating latency almost
20% from the baseline. Also, the communication latency
affects more in the total latency for both cases (lc >> lp). We
present the average of accumulated latency at each processing
point in Fig. 9. The sampling approach can significantly reduce
the processing time at the first processing point compared to
the baseline. Furthermore, the autonomic approach is superior
to the fixed-rate approach at the rest processing point.

Since the number of output is directly corresponding to the
number of input, the expected delivered output of fixed-rate
approach is half of the baseline. Similarly for the proposed
method, due to the restrict deadline, the sampling number
is half of the expected maximum number. Fig. 10 shows
the number of subscription processing. The proposed method
produces slightly more outputs compared to the fixed-rate
approach. The difference between real processing number and
the expected number of the proposed method and fix-rated
method are 18.9% and 32%, respectively. These errors might
come from uneven streaming content and communication link
fluctuation.

VI. LIMITATIONS AND DISCUSSION

We state and leave discussions in this section for two
issues. The first issue is about the definition of response time in
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Fig. 10: The number of produced outputs for 8-windows run

sliding-window and aggregation processing [20]. The sliding
window could be an application of Reservoir sampling which
controls the number of reservoirs for each production. Either,
it could cut off after a specific passing time. The latency in
a waiting queue before processing may be ignorable. In this
paper, we evaluate only on the simple processing flows. The
second issue is about the accuracy of the learning model as
well as the candidate selection algorithm in sampling number
decision which could affect the efficiency of QoS control. The
accuracy of the learning model depends on multiple factors
including the number of learning items and the learning algo-
rithm and features. At the current state, we use the sampling
decision on each node as feedbacks but do not synchronize
them to one solution. The synchronization mechanism might
improve processing efficiency but must be a trade-off with
communication overhead. We should further investigate the
evaluation of these effects. To deal with dynamicity of net-
works, the more-frequent recalculation (computation window)
might provide a better estimation. However, it must trade off
with higher resource consumption.

VII. CONCLUSION

This paper introduces an autonomic sampling method for
load shedding oriented by the deadline requirement aiming
at coarse-grained stream processing requests. The deadline
considers the response time, a time difference, computing from
source to actuator in full-cycled stream processing system. In-
stead of controlling sampling probability or sampling rate, our
proposed method set a goal at preserving the sampling number
by adjusting the sampling rate during the operation window.
The sampling number derives from the learning-based model
and small-computation greedy function for picking up a can-
didate number. Also, we support the fully-distributed decision
with a corresponding neighbor-feedback control mechanism.
For evaluation, we implement sampling method overlaying our
developed fully-distributed complex event processing engine,
named EdgeCEP. The results show advantages of our method
over fixed-rate sampling method in both terms of total latency
(response time) and sampling controllability.
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