
Vehicular Route Identification Using Mobile
Devices Integrated Sensors

Luca Bedogni∗, Luciano Bononi∗
∗Department of Computer Science and Engineering, University of Bologna, Italy

{luca.bedogni4,luciano.bononi}@unibo.it

Abstract—Location based services are commonly used by sev-
eral mobile applications and services, to provide content related
to the area in which the user is located. This enables services
such as navigation, particularly useful for vehicular applications,
though possibly exposing private information about the user,
which has to explicitly grant the location permission. However,
smartphone have also many other sensors off the shelf, which
currently do not require any permission to be used, and may
be leveraged to track the users movements, hence the location,
thus raising potentially serious privacy issues. In this paper we
present a study which shows that by analyzing data obtained
through the accelerometer and the magnetometer, it is possible
to achieve less than 50 meters of localization accuracy even for
long journeys, and 95% of accuracy on the road identification.

I. INTRODUCTION

Nowadays, location based services are popular in different
domains, as they offer the possibility to contextualize the
application in use, hence making it more related to the current
user context. Modern smartphones can utilize the GPS, which
is often used as the standard solution to localize the device,
given its precision and wide availability outdoors. Due to
the possible private data which can be extracted from raw
GPS measurements [12], currently Android applications need
to explicitly ask for the permission to use the GPS. This
is to prevent applications which may acquire the GPS data
for malicious purposes, for instance understanding whenever
the user is not at home. However, modern smartphones also
carry several other integrated sensors, such as accelerometers,
gyroscopes, magnetometers and barometers, to name few,
which may be used to understand the context in which the
device is located. Closer to the topic of this study is the
possibility for a mobile device to use data obtained through the
internal sensors, which currently do not require any explicit
permission on Android devices, to track the user positions
whilst driving. Clearly this would constitute a serious privacy
issue, as users may have their private information exploited
by malicious applications without being aware of it.

It has already been shown that through smartphone inte-
grated sensors it is possible to understand movement patterns,
which can be mapped to different activities performed by the
user [4]. Focusing on the vehicular scenario, accelerometers
can be used to understand accelerations, which correlated with
time provide space and magnetometers indicate the direction
the smartphone is pointing at. By building specific models
which leverage the sensor dynamics, it is possible to build
the so-called Dead Reckoning Inertial navigation, which by

analyzing sensor measurements can give the direction and
space traveled by a device, though they have been mostly used
for pedestrian tracking and indoor localization [13]. However,
simply relying on Dead Reckoning inertial navigation systems
can lead to inaccurate estimates, as they can carry cumulative
errors due to inaccuracy in the measurement. Therefore, iner-
tial systems are typically corrected by sporadic GPS readings,
which can reduce the number and entity of the error [1],
eventually providing a more accurate localization.

In this paper, we present a study aimed at understanding
the potentials of such as system and subsequently the possible
privacy issues which may arise from the use of inertial sensors
to understand tracks traveled by users whilst driving a car. By
knowing the initial position of the user, we exploit data from
the accelerometer to understand the distance traveled and from
the magnetometer to derive turn events. All the used sensors
currently require no permission on Android devices, hence any
installed application can register to receive value updates from
them. As we previously stated, we show that only relying on
dead reckoning systems may and up in possible high errors,
as inaccuracies sum up from the beginning to the end of the
journey.

Thus, to improve the tracking accuracy, we also use real
map data obtained through OpenStreetmap1, which contains
the road definition with lengths and turn angles. The general
idea of our proposal is to obtain lengths and angles of road
traveled, and then match them on a real road network. This
empowers our proposed system to correct Dead reckoning
errors at the end of each road segment, hence reducing the
problem of accumulating errors throughout the entire journey.

Our performance evaluation is twofold: at first, we compare
the results of our system against classical Dead Reckoning
systems and GPS with real data obtained from a custom
Android application developed within the scope of this study.
The aim is to match the final point in which the vehicle
stopped, by recognizing subsequent intermediate roads. More-
over, we also perform a simulative study on several cities
worldwide, to understand the recognition boundaries of this
systems depending on the size and area in which the tracking
has to be performed. We show that in most cities worldwide
it is possible to uniquely identify paths with at least 10 turns
turns, even in big cities with many roads. Moreover, it exists
a rather evident difference in performing such recognition

1http://www.OpenStreetmap.org

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 820

in the U.S. or in Europe, as the latter have more diverse
road deployments, which make the recognition easier as road
angles and lengths differ more compared to the former, which
resembles more a Manhattan grid deployment. In practice, for
Europe as little as 4 turns uniquely identify paths regardless
of the city size, while for the U.S. it takes at least ten turns
to achieve the same result.

The rest of this paper is organized as follows: Section II
presents related work from literature; Section III details our
proposal and outlines the algorithm used; Section III-C details
the implementation of our proposal; Section IV presents results
from the performance evaluation, and Section V concludes this
work.

II. RELATED WORK

In this section we present related work from literature,
concerning the use of mobile devices integrate sensors for
navigation, and the recognition of activities exploiting sensor
data, commonly known as Transportation Mode Detection.

The need to navigate and route people and objects without
GPS is certainly an interesting and useful problem to be
addressed. For instance, indoor navigation systems could not
rely on the GPS, as it is highly inaccurate indoors [16], and
instead have to use inertial sensors [11], augmented reality
[7] [21], or wifi fingerprinting [16], to name some possible
techniques.

Transportation Mode Detection is an active research topic,
being its information useful for a multitude of different ser-
vices, ranging from context aware computing to personalized
apps usage [3] [4] [8] [20]. Although methodologies differs
from each other, they can be broadly classified in two groups:
GPS-based and Sensor-based. While the former relies on the
speed obtained from GPS data to infer the transportation mode,
the latter uses inertial sensors which are typically classified
using machine learning techniques. The GPS based systems
offer a good accuracy for discriminating between motorized
modes and pedestrian modes [20], but offer lower performance
for classifying a more vast set of transportation modes [4].
Moreover, they also consume more battery than using inertial
sensors, which is also something to account for in mobile
devices.

Dead Reckoning Systems (DRS) exploit inertial sensor data
to obtain a set of movements, which are usually based on
the acceleration, from which it is possible to obtain the route
[14]. Similar systems have also been applied to GPS enabled
vehicles in roads, mainly to improve the accuracy of the
system [22], in scenarios in which the GPS offers scarce
accuracy in vehicular systems, typically due to urban canyons
and tall buildings. Multiple sensors can also be aggregated
together, to achieve a higher localization accuracy [15].

Few works can be found that merge the information of
DRS and road data, to match the movements recognized by
the DRS to specific roads. Most of them typically use the
information from inertial sensors to update other data, such
as WIFI maps [9], or to construct indoor maps [23]. In [2]
the authors present a system which is able to perform indoor

localization with good precision, given that it is provided the
map of the indoor location. It is worth to note the work of
[17], where the authors integrates OpenStreetmap information
with DRS to obtain indoor navigation. Closer to this work is
[19], which shows that with real data of magnetometers it is
possible to match specific roads, hence journeys. In addition
to [19] we also add the accelerometer into our systems, which
helps in understanding the length of the road segment traveled.
Moreover, we also present a simulation study which show the
constraints in which such system can operate in real world
cities.

Data from OpenStreetmap has been already used in a mul-
titude of different domains, which spans from the generation
of real vehicular traces [5], to vehicle navigation [18]. In
general, the data offers plenty of details, although some areas
are recorded with more precision than others compared to the
real road deployment [10].

III. MODEL

In this section we describe the model we developed within
the scope of this study. Our proposal builds on raw data
obtained through smartphone integrated sensors, precisely the
accelerometer and the magnetometer, used to infer the distance
traveled and the turn events, respectively.

In particular, we compute a segmented trace, cut at every
turn, leveraging data from inertial sensors. Eventually, we
match the segmented trace to a real road deployment, with
the aim to reduce the overall error, as matching intermediate
segments would compensate for errors of the dead reckoning
system. Specifically our algorithm jointly uses information
obtained through accelerometer and magnetometer, and binds
them with data obtained through OpenStreetmap. We proceed
in different steps, which we summarize as:
• Step 1: Segments Identification, in which we identify the

number of road segments by monitoring the magnetome-
ter data

• Step 2: Dead Reckoning System (DRS), through which
we compute the length of each traveled segment thanks
to the accelerometer measurements

• Step 3: Segments assignment to OpenStreetmap data, in
which we build the possible path that has been traveled
by the device searching for similar road segments in the
real road deployment downloaded from OpenStreetmap

In the following sections we present each of these steps in
detail.

A. Segments identification

At first, we need to identify the different segments, based
on the orientation, obtained from the raw measurements read
from the magnetometer. In other words, in the first step of our
algorithm we need to compute the total number of roads that
have been traveled and their orientation.

We define the measurement Ω(t) at time t as:

Ω(t) =< A(t),M(t) >, (1)

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

821

where A(t) is the tuple containing the 3 axis measurements
of the accelerometer at time t and M(t) is the tuple of the 3
measurements of the magnetometer.

In this step, we only use the M(t) to obtain the turns per-
formed by the device. More in detail, we compute the moving
variance over the last N measurements of the magnetometer.
To do it, we compute at first the moving mean at time t as:

(2)µt =

∑t
i=t−NM(i)

N
,

and the corresponding moving variance at time t as

(3)σ2
t =

∑t
i=t−NM(i)2 − µ2

t

N − 1

We then define a binary hypothesis H(t) to σ2
t defined as:

H(t) =

{
0 σ2(t) ≥ ε
1 σ2(t) < ε

with threshold ε equal to

(4)ε =

∑N
i=1 µi

N
,

which is basically the mean of the moving means computed
through Equation 2.

At each time t, H(t) is then either a 1, identifying that the
car was not turning, or a 0 which instead reflects a turn. In
other words, a turn starts when we have a transition 1 → 0
and ends when we observe 0→ 1.

We can now easily build the vector of orientations T as

T =M(t) · (1−H(t)), (5)

which is then a sequence of 0 and angles, referring to the
orientation of the vehicle at time t.

B. Dead Reckoning System

In this step, we describe the Dead Reckoning System which
we leverage to obtain the length of each road segment.

At first, since the accelerometer reports the measurements
on the 3 axis, and in order to be independent from the
orientation of the device, we compute the magnitude Ȧ(t) of
the measurements of the accelerometer at time t as:

Ȧ(t) =
√
A2

x(t) +A2
y(t) +A2

z(t) (6)

Using the magnitude is a popular solution for scenarios like
the one we studied in this paper, and it is widely used in
literature for similar tasks [4] [6], since it allows to abstract
from the specific orientation of the device.

We then define the vector Λ as

Λ(t) = H(t) · Ȧ(t), (7)

built with all the accelerometer values pertaining to straight
segments. That is, we do not consider the lengths while
the vehicle is turning, thus we only compute it for straight
segments, as all the accelerometer values would be multiplied
by 0.

We then define the route R as

R = {D,O}, (8)

where D = {D0,D1, . . . ,DN−1} is the list of com-
puted distances of all the road segments, and O =
{O0,O1, . . . ,ON−1} is the list of orientations of the next
segment at each turn, where the generic Oi is the average
of the orientation values of segment i+ 1.

We can now compute the total distance traveled over each
road segment. Let Di be the computed length of the i-th
segment by picking the non-zero sequences in Λ(t). Then,
we can compute the total distance traveled Di of segment i as

Di = (t− ti−1) · V0
i +

∫ ti

ti−1

Ȧ(t)dt (9)

Basically, we compute the length of segment Di by calculating
the total acceleration within the segment, summed to the
initial speed when entering the segment. In fact, if the total
acceleration over segment i is 0, then the distance traveled is
simply computed by the entering speed V 0

i multiplied by the
travel duration within edge i.

Eventually, R completely defines the whole journey of the
vehicle in terms of road lengths and turns, which will be used
to match the measured values to real road segments, as we
will describe in the following section.

C. OpenStreetmap Segment Matching

In this Section we describe the algorithm we developed
to match sensor data to road segments starting from R,
by leveraging OpenStreetmap data, which we call PRIME
(Probabilistic Recursive Inertial Matching Edges).

We start by defining a graph G = (V,E), in which V are
the vertices and E are the arcs.

The general idea of the algorithm is straightforward: our
aim is to match each segment Di ∈ R with arcs in E,
and all the vertices V with turns Oi ∈ R. More in detail,
starting from vertex V0 we look for all the outer arcs, and
select that which matches with the angle O0 and length
D0. We then repeat the exact same procedure in V1, by
selecting the arc which matches the angle O1 and the arc with
length D1. However, data from the sensors and that extracted
from OpenStreetmap may carry errors, which make the exact
matching of arcs and vertices unpractical. Hence, we extend
further the edge selection phase to account for noise error,
eventually considering more road segments. We then define
probabilities to select those that better match the computed
lengths and orientations we got in the previous steps.

At first, it is highly challenging to correctly estimate the
length traveled from the device. This is because the data
from the accelerometer may be inaccurate due to measure-
ments frequency and noise, and hence the computed distance
may be slightly different than that actually traveled by the
vehicle. Hence, we introduce a threshold η which estimates
our admissible error. Basically, we assume that the length of

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

822

each segment Di should instead be intended as Di ± η. More
formally we change each Di into D̄i as following:

D̄i = [Di − η,Di + η] (10)

Another possible issue comes from the inaccuracy in the
azimuth reading from the magnetometer, which might exclude
some of the arcs even if small differences are found. Therefore,
we apply a similar technique to the one presented before,
in which we add a threshold θ which accounts for possible
measurement errors of the magnetometer. Hence, when the
algorithm checks whether the real road segment K might have
been traveled and therefore should be added to the list of
segments to be evaluated, we check if K ∈ Ōj , where Ōj

is defined as

Ōj = [Oj − θ,Oj + θ]. (11)

We now build a tree of possibilities T, starting from the
initial vertex. We then add all the possible arcs for which the
length is between D̄0. We then repeat the same methodology
at the end of the i-th arc, by considering the arcs which have a
turning angle ∈ Ōi. We then add those which have a length ∈
D̄i, and we repeat the same for all the elements in R. Clearly,
using high values of η and θ would include more possible
paths in T, while using low values may possibly exclude the
right path, due to measurement errors and noise. Obviously,
some of the paths of the tree may not have all the segments
of the journey, as some arcs may not be found starting from
a vertex, thus leading to a wrong path without the number of
road segments in R.

Then, we define a series of probabilities towards identifying
the most probable path among all the possible ones. We define
pDi as the probability for the i-th arc as:

pDi = 1− |Di − Ei|
Ei

, (12)

where Ei is the real length of the i-th road segment. In case
of a high error, pDi would be close to 0, while in case of a
small one it will be close to 1. We divide by Ei to weigh the
errors depending on the length of the arc, as the same absolute
error weighs less on a longer arc than in a shorter one.

We perform a similar operation to assess the correctness of
the orientation of the edge with pOi , defined as

pOi = 1− |Si − Vi|
Vi

, (13)

where in this case Vi is the azimuth of the i-th vertex.
We then compute the total probability P(J) for the whole

journey J as

P(J) =
∏
i∈J

pDi · pOi . (14)

Finally, we select the path J whose P(J)k is the highest one,
thus ending the algorithm.

IV. PERFORMANCE EVALUATION

In this section we provide performance evaluation of our
proposal. We separate our analysis in two parts: the first
is devoted to analyze the effectiveness of our system in
inferring user location routes, which we analyzed with real
data obtained through a custom made Android application.
We present this study in Section IV-A. We then move to
understanding how different paths and city deployments may
affect the practical possibility to recognize paths, based on
roads heterogeneity and city size, which is presented in Section
IV-B.

A. System evaluation

The first analysis we perform is devoted to understand
the effectiveness and accuracy of the proposed system in
terms of understanding the path traveled by the car, hence
the final point. To provide a more comprehensive analysis, we
compare our proposed PRIME algorithm with 3 other different
proposals, which are:
• Dead reckoning: this algorithm only uses the data com-

puted in Section III-A and Section III-B. In other words, it
does not match the edges on real map data, but only uses
inertial sensors to calculate a trajectory from an initial
point to an end point.

• Random: this algorithm matches segments on real map
data, but does this randomly at each turn. Basically, it
understands when user turns, but takes a random edge,
hence mimicking a system with a corrupted magnetome-
ter.

• Greedy: this proposal uses both the dead reckoning
system and the real road matching. However, instead of
building a tree of possible routes, it always select the best
matching segment at each turn, which is the one which
deviates less from the measurement. In case of errors, it
may lead to wrong decisions which may end up in huge
estimation errors.

Our analysis is performed on real data. To gather it, we
developed an Android application which records the measure-
ments from the accelerometer and the magnetometer installed
in the smartphone. During a single measurement run, we do
not variate the position of the device, which is instead varied
among different measurement runs. Data is sampled at 10 Hz,
and we gathered more than 5 hours of samples, with a total
of 50 unique paths.

In Figure 1 we present the result of the study, which have
been obtained by running the algorithm on all the paths
we have recorded, with variable length from 100 meters to
5000 meters.

In particular, Figure 1(a) shows the error achieved by the
four different algorithms between the correct final position and
the computed one. That is, the euclidean distance between the
real ending point and the computed one. As it can be seen,
PRIME performs the best, while all the others offer lower
performance. Surprisingly, the Greedy and the Random version
offer worse performance compared to the Dead Reckoning.

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

823

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000 2500 3000 3500 4000

E
rr

o
r

(m
)

Path length (m)

RIME
Dead Reckoning

Greedy
Random

(a) Absolute Error

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000 3500 4000

E
rr

o
r

(%
)

Path length (m)

RIME
Dead Reckoning

Greedy
Random

(b) Relative Error

 20

 30

 40

 50

 60

 70

 80

 90

 100

RIME Greedy Random

C
o
rr

e
c
tn

e
s
s
 p

e
rc

e
n
ta

g
e

(c) Road Correctness

Fig. 1. Performance evaluation of the proposed solution.

This aspect lies in the imprecision of the measurements, which
are instead better compensated by PRIME, which explores
a wider set of possible edges. In particular, it is interesting
to note that for PRIME the error does not increase too
much as the total length of the path increases. For all the
other algorithms, longer paths exhibit higher errors. This is
explained by the fact that PRIME constrains the path to be on
roads, and thanks to the fact that it explores a set of possible
edges, eventually selecting the most probable path, it ends
up in achieving a stable performance regardless of the length
of the path. It is important to note that PRIME may select a
wrong segment within the path. However, as we select the path
with the best overall probability, this may be compensated by
subsequent segments which instead are well recognized. This
is also evident from the fact that even for short paths less than
500 meters long, PRIME achieves an error comparable with
other proposals. However, it remains constant, while for the
other proposals it scales up, hence indicating further errors
during the path, which are instead not observed with PRIME.

Figure 1(b) shows a similar analysis, where however the
studied metric is the ratio of error over the total length of
the path. Here it is possible to see that all proposals follow a
similar path, but PRIME achieves again the best results, since
its error is somewhat constant regardless of the length of the
path traveled, something which is not true for the other three
proposals. However, all proposal seem to suffer from higher
errors from shorter paths, something which was also possible
to see in Figure 1(a).

In systems like the one studied in this paper, the focus
may be not precisely on the ending point, but maybe on the
area. Hence, we evaluate in Figure 1(c) whether the final
computed road corresponds with the real one. This studies
the scenario in which we are not interested to understand the
precise point, but we narrow the ending position to a single
road. In this analysis we do not show the Dead Reckoning
proposal, as it does not computes path on roads, but follows
the measurements of the sensors which can lead in places
without roads. PRIME achieves again the best results, being
able to recognize the final road almost in the 95 % of the cases,
while other proposals fall shortly of 35 %. Again, this happens
as PRIME can compensate the errors in the middle of the path
better than other algorithms.

 0

 50

 100

 150

 200

 250

 5000 10000 15000 20000

P
a

th
s
 f

o
u

n
d

City Nodes

USA - 3 turns
USA - 4 turns
USA - 5 turns

USA - 10 turns
EU - 3 turns
EU - 4 turns
EU - 5 turns

EU - 10 turns

Fig. 2. Analysis on different city size in Europe and USA.

B. City wide analysis

The second analysis we performed is aimed at understand-
ing how much real city roads, and different city deployments,
impact the possibility to recognize paths traveled by cars based
solely on the recognition through the accelerometer and the
magnetometer. We select different city sizes in the U.S.A.
and Europe, which exhibit vastly different road deployments,
with the U.S.A. which tend to have a more Manhattan grid
like scenario, hence with turns which are similar between
them in terms of angle, and Europe, in which cities are more
diversified, hence with roads which have turns angles which
differ more.

For each city, we randomly select a path and simulate as
there was a vehicle diving on it, which then records sensor
measurements. We then look how distinctive such measure-
ments are in the same city, looking for similar paths within
the same area. Clearly smaller cities have less possibilities,
hence it is easier to find unique paths, while bigger cities
have more roads, hence possibly more paths. Due to space
constraints, we perform the tests only with η = θ = 25.
Obviously increasing these values would result in a higher
number of identified paths, though some would be far less
similar to the real one, while setting them to a lower value

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

824

would restrict the analysis too much, without considering noise
which is present in similar measurements. A complete analysis
on the importance of η and θ is left as future study.

Figure 2 shows the results of our analysis, which we
performed for paths of 3, 4, 5 and 10 turns in total, and
for different cities in the U.S.A. and Europe. We plot the
total number of paths found over the city nodes, which are
the crossroads at which a vehicle may turn. In total, we have
analyzed more than 700.000 unique paths in 60 cities, grouped
into 5 different sizes. As it is straightforward to note, a higher
number of turns reduces the number of possible paths with
similar values. The U.S.A. are far less identifiable, as roads
tend to have more similar angles of 90 degrees, which make
paths more similar among each other. Concerning the case
for Europe, we achieve a low number, hence high possibility
of identifying the path only with 3 turns. Harder to see on
the chart are the Europe lines with more than 3 turns, which
achieve results close to 1, thus meaning that in all the city
deployment it was possible to find only 1 path with the
characteristics of the simulated one. In general it is fair to
say that globally, paths in the U.S.A. are far less identifiable,
and in general only a higher number of turns enables the
identification of them. Different the case for Europe, where
cities with similar sizes compared to the U.S.A. scenario offer
far less similar paths.

V. CONCLUSION

In this paper we have presented a study towards identifying
driving paths of users by exploiting data obtained through
mobile device integrated sensors. In case of malicious installed
applications on mobile devices, sensors can be accessed with-
out requiring explicit permissions to the users, which then may
not be aware of data leaks. We have then shown how these
data may be exploited to track driving paths of users, by using
popular sensors such as the accelerometer and magnetometer,
now available in many off the shelf devices. Results from
field tests have shown the accuracy of the system, which
outperforms other proposals we compared against. We have
also performed a simulation study on several cities in the U.S.
and Europe, showing that with less than 10 turns it is possible
to almost uniquely identify a singular path, even in large cities.

Future works on this topic are towards reducing the turn
angle and road segment length, which would enable to improve
the recognition of the system.

REFERENCES

[1] Mahmoud Abd Rabbou and Ahmed El-Rabbany. Tightly coupled
integration of GPS precise point positioning and MEMS-based inertial
systems. GPS Solutions, 19(4):601–609, oct 2015.

[2] J. C. Aguilar Herrera, A. Hinkenjann, P. G. Ploger, and J. Maiero. Robust
indoor localization using optimal fusion filter for sensors and map layout
information. In International Conference on Indoor Positioning and
Indoor Navigation, pages 1–8. IEEE, oct 2013.

[3] Media A Ayu, Teddy Mantoro, Ahmad Faridi A Matin, and Saeed S O
Basamh. Recognizing User Activity Based on Accelerometer Data from
a Mobile Phone. pages 617–621, 2011.

[4] Luca Bedogni, Marco Di Felice, and Luciano Bononi. Context-aware
Android applications through transportation mode detection techniques.
Wireless Communications and Mobile Computing, 16(16):2523–2541,
nov 2016.

[5] Luca Bedogni, Marco Gramaglia, Andrea Vesco, Marco Fiore, Jérôme
Härri, and Francesco Ferrero. The Bologna ringway dataset: Improving
road network conversion in SUMO and validating urban mobility
via navigation services. IEEE Transactions on Vehicular Technology,
64(12):5464–5476, 2015.

[6] Armir Bujari, Bogdan Licar, and Claudio Enrico Palazzi. Movement
Pattern Recognition through Smartphone’s Accelerometer. In Proc IEEE
DENVECT, 2012.

[7] Ibrahim Arda Cankaya, Arif Koyun, Tuncay Yigit, and Asim Sinan
Yuksel. Mobile indoor navigation system in iOS platform using
augmented reality. In 2015 9th International Conference on Application
of Information and Communication Technologies (AICT), pages 281–
284. IEEE, oct 2015.

[8] Pierluigi Casale, Oriol Pujol, and Petia Radeva. Human activity
recognition from accelerometer data using a wearable device. Pattern
Recognition and Image Analysis, 6669 LNCS:289–296, 2011.

[9] Qiang Chang, Samuel Van de Velde, Weiping Wang, Qun Li, Hongtao
Hou, and Steendam Heidi. Wi-Fi Fingerprint Positioning Updated
by Pedestrian Dead Reckoning for Mobile Phone Indoor Localization.
pages 729–739. 2015.

[10] Hongchao Fan, Alexander Zipf, Qing Fu, and Pascal Neis. Quality
assessment for building footprints data on OpenStreetMap. International
Journal of Geographical Information Science, 28(4):700–719, apr 2014.

[11] Carl Fischer, Kavitha Muthukrishnan, Mike Hazas, and Hans Gellersen.
Ultrasound-aided pedestrian dead reckoning for indoor navigation. In
Proceedings of the first ACM international workshop on Mobile entity
localization and tracking in GPS-less environments - MELT ’08, page 31,
New York, New York, USA, 2008. ACM Press.

[12] Philippe Golle and Kurt Partridge. On the anonymity of home/work
location pairs. In Hideyuki Tokuda, Michael Beigl, Adrian Friday,
A. J. Bernheim Brush, and Yoshito Tobe, editors, Pervasive Computing,
pages 390–397, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[13] A K M Mahtab Hossain and Wee-Seng Soh. A survey of calibration-
free indoor positioning systems. Computer Communications, 66:1–13,
2015.

[14] A.R. Jimenez, F. Seco, C. Prieto, and J. Guevara. A comparison of
Pedestrian Dead-Reckoning algorithms using a low-cost MEMS IMU.
In 2009 IEEE International Symposium on Intelligent Signal Processing,
pages 37–42. IEEE, aug 2009.

[15] Wonho Kang and Youngnam Han. SmartPDR: Smartphone-Based
Pedestrian Dead Reckoning for Indoor Localization. IEEE Sensors
Journal, 15(5):2906–2916, may 2015.

[16] H. Leppäkoski, J. Collin, and J. Takala. Pedestrian Navigation Based
on Inertial Sensors, Indoor Map, and WLAN Signals. Journal of Signal
Processing Systems, 71(3):287–296, jun 2013.

[17] Jo Agila Bitsch Link, Paul Smith, Nicolai Viol, and Klaus Wehrle.
FootPath: Accurate map-based indoor navigation using smartphones.
In 2011 International Conference on Indoor Positioning and Indoor
Navigation, pages 1–8. IEEE, sep 2011.

[18] Dennis Luxen and Christian Vetter. Real-time routing with Open-
StreetMap data. In Proceedings of the 19th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems -
GIS ’11, page 513, 2011.

[19] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir. The perils of user
tracking using zero-permission mobile apps. IEEE Security Privacy,
15(2):32–41, March 2017.

[20] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen,
and Mani Srivastava. Using mobile phones to determine transportation
modes. ACM Transactions on Sensor Networks, 6(2):1–27, 2010.

[21] Umair Rehman and Shi Cao. Augmented-Reality-Based Indoor Nav-
igation: A Comparative Analysis of Handheld Devices Versus Google
Glass. IEEE Transactions on Human-Machine Systems, pages 1–12,
2016.

[22] Ahmed Abdel Wahab, Ahmed Khattab, and Yasmine A. Fahmy. Two-
way TOA with limited dead reckoning for GPS-free vehicle localization
using single RSU. In 2013 13th International Conference on ITS
Telecommunications (ITST), pages 244–249. IEEE, nov 2013.

[23] Xiuming Zhang, Yunye Jin, Hwee-Xian Tan, and Wee-Seng Soh.
CIMLoc: A crowdsourcing indoor digital map construction system for
localization. In 2014 IEEE Ninth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), pages
1–6. IEEE, apr 2014.

PerVehicle'19 - 1st International Workshop on Pervasive Computing for Vehicular Systems

825

