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Abstract—Computational causal behavior models can be
used for joint human activity recognition and reasoning
about the context of an activity, like the location of used
objects, which is relevant for assistive systems. Such models
are computationally expensive due to the large number
of different states that need to be considered. However,
the distribution of these states is often highly symmetrical.
Lifted Marginal Filtering (LiMa) is an inference algorithm
that maintains a suitably factorized state distribution, such
that symmetrical factors can be represented compactly. In
this paper, we show for the first time the application of
LiMa to a complex real-world activity recognition setting
based on real IMU data. This is achieved by introducing
an operation that prevents the distribution representation
to grow indefinitely, by projecting the distribution back to
an exchangeable distribution. We show that LiMa needs
fewer states to represent the exact filtering distribution,
and achieves a higher activity recognition accuracy when
only limited resources are available to represent the state
distribution.

I. INTRODUCTION

Recognizing activities of daily living (ADLs) and
inferring context information from data of inertial mea-
surement units (IMUs) is a challenging task that is highly
relevant for providing automatic assistance. Apart from
recognizing the activities, an assistive system needs to
reason about the context, i.e. the state of the environ-
ment, like the location or other properties of objects.
Computational Causal Behavior Models (CCBMs) [7]
are probabilistic inference methods where the system
dynamics (the transition model) are modeled by prob-
abilistic precondition-effect actions, i.e. they incorporate
causal information to infer not only performed actions,
but also context information.

These models are computationally expensive, due to
the large number of discrete environmental states that
need to be tracked. However, the tracked states often
have some symmetrical structure, due to the fact that the
environment state is not observed directly: For example,
observing that an object was moved does not allow to
discriminate the identity of the object, and thus, multiple
states need to be tracked, that are only different in the
permutation of objects and locations. More formally,
the state distribution exhibits (partial) exchangeability.

Fig. 1: Instrumentation and trial setting of kitchen task.
Reprinted from [7].

Lifted Marginal Filtering (LiMa) [8] exploits this prop-
erty, such that fewer states need to be represented
explicitly, and thus inference becomes more efficient.
The central technical idea is to introduce a suitable
factorized representation of the state distribution, such
that some factors are exchangeable distributions that
can be represented more compactly than by complete
enumeration (Section III). The algorithm can perform
inference directly on the factorized representation with-
out resorting to the original, much larger distribution
(Section IV). When the system dynamics break the
exchangeability, the state representation automatically
adapts to a more explicit representation by splitting
operations, conceptually similar to operations in lifted
probabilistic inference [13].

The technical contribution of this paper is twofold:
(i) a method to tackle the problem that the state repre-
sentation grows indefinitely over time due to repeated
splitting operations, by introducing a domain-specific
approximation operation that projects the distribution
back to an exchangeable distribution (Section IV-C); (ii)
empirical evidence that the proposed method allows us to
use LiMa for a complex real-world activity and context
recognition task (Section V), as opposed to the simulated
scenarios considered in prior work [15], [8].
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II. PROBLEM STATEMENT

We start by outlining the problem that makes the
factorized distribution representation necessary. In this
paper, we are concerned with activity and context recog-
nition in a kitchen task (see Figure 1) that consists of
the subtasks (i) preparing the kitchen, (ii) cooking, (iii)
preparing the table, (iv) eating, and (v) washing the
dishes. The data (IMU data of 7 participants performing
the task) is annotated with an action class (16 possible
classes, e.g. taking, moving, cutting, washing), handled
object (10 objects) and locations (5 locations).

The states that need to be tracked for activity
and context recognition contain the location and state
(clean/dirty, cooked, . . . ) of each object and the agent.
Due to the fact that context information is not observed
by the sensors directly, typically there is a very large
number of states that have non-zero probability at a given
time. In a previous study, the state space for this scenario
consisted of 146 million states [12].

However, many of these states are similar, except for
the permutation of objects: Suppose we observe that the
agent is taking an object, then moves, and then placing
an object down, and suppose that two objects A and
B are available. Based on the observations, we cannot
discriminate whether A or B was moved, and thus we
need to track (at least) two states. For 10 objects, there
are 10! = 3, 628, 800 permutations. In the real scenario,
not all permutations can actually occur. Furthermore,
some actions require a specific object (e.g. only the
pot can be used for cooking), thus when observing
such an action, the object identity can be inferred. Still,
abstracting from permutations can potentially reduce the
required number of states by a large amount.

III. FACTORIZING MULTISET DISTRIBUTIONS

In this section, we will present the main technical
idea of LiMa: a suitable factorization of a distribution
of states, such that some factors are exchangeable and
can be represented compactly. For more details, we refer
to [8].

In our approach we use multisets to represent states.
Multisets naturally allow to describe situations where
multiple similar objects are present, i.e. multiset-based
states allow the compact representation of similar situa-
tions that we are interested in.

Formally, a multiset s ∈ S is a function of entities
e ∈ E to multiplicities (how often this entity occurs in the
multiset), i.e. S = E 7→ N≥0. We use structured entities
here, i.e. entities are key-value maps. For example,
suppose that at some point in the kitchen task, three
objects exist: A spoon, a plate, and a pot. The spoon

and the pot are dirty, the plate is clean. This situation is
represented by the following multiset1:

s = J 1〈N: Spoon,D: >〉, 1〈N: Pot,D: >〉,
1〈N: Plate,D: ⊥〉 K

(1)

Due to uncertainty in the sensor data, we need to
maintain a distribution p(S) of such states over time.
This can simply be done by maintaining a set of tuples
(si, pi) to represent a categorical distribution. However,
the number of tuples can easily grow very large, as
outlined in Section II.

Suppose we can decompose a multiset state s into
two parts r and v, such that there is a bijection from s
to tuples (r, v). Then, p(S) can be factorized as:

p(S) = p(R, V ) = p(R) p(V |R) (2)

This concept, called Rao-Blackwellization [5], is in-
dependent of multisets. The idea here is that v is
actually a vector of exchangeable random variables
(RVs) v1, . . . , vn. A set of RVs v1, . . . , vn is ex-
changeable when for all permutations π of {1, . . . , n},
p(V1=v1, . . . , Vn=vn) = p(V1=vπ(1), . . . , Vn=vπ(n)).
Distributions of exchangeable RVs can be represented
more efficiently than by complete enumeration, by suf-
ficient statistics [9].

The question now is how to decompose a multiset
state s into such a tuple (r, v). Here, the fact that we
use structured entities allows for such a decomposition:
We separate the structure of the multiset (how many
entities are there, and what are their properties) from the
values of the properties. For example, the state given in
Equation 1 can be decomposed as follows:

r =J 1〈N: n1,D: d1〉, 1〈N: n2,D: d2〉,
1〈N: n3,D: d3〉 K

v =(Spoon,>, Pot,>, P late,⊥)

(3)

Given that p(S) is a categorical distribution with finite
support, p(R) is also a finite categorical distribution, as
multiple states s are mapped to a single structure r. We
assume that p(V |R) is a product of m exchangeable
distributions such that p(V |R) =

∏
i pi(Vi|R), where

Vi are the subset of RVs corresponding to pi. We call
ρ(pi) the representation of pi. For example, a uniform
distributions of permutations of 3 objects A1, A2, A3 (i.e.
an urn without replacement where 3 elements are drawn)
can be represented as “U(A1, A2, A3)”.

The remaining question is how to associate property
values in r with the RVs V1, . . . , Vn. We propose a
labeling mechanism that provides this association. The
following example illustrates this, for a more formal
definition we refer to [8]:

1We use J · K to denote multisets, and 〈·〉 to denote partial functions
(maps).
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Consider the situation shown in Equation 3. However,
suppose we now only know that two of the objects are
dirty and one is clean, but not their identities. This means
we need to maintain three states to represent p(S). Rep-
resenting this situation in the factorized representation,
however, requires only a single tuple (r, ρ(p(V |r)))2:

r =J 2〈N: n,D: d1〉, 1〈N: n,D: d2〉 K
ρ(p(V |r)) =〈n: U(Spoon, Pot, P late),

d1: δ>,d2: δ⊥〉
(4)

Here, n, d1 and d2 are labels (or pointers) that asso-
ciate properties in r with the corresponding factor of
p(V |r). As all of these factors are exchangeable, this
unambiguously defines the distribution of each property.
For simplicity, we will abbreviate the entities with ec
and ed (with indices indicating whether they are clean
or dirty), such that we can write r = J 2ed, 1ec K.

We call such a tuple l = (r, ρ(p(V |r))) a lifted state.
Each lifted state describes a distribution of (ground)
states that all have the same structure r. In the example,
the lifted state represents a uniform distribution of three
ground states, where either the spoon, the pot, or the
plate is clean, and the other two objects are dirty.

IV. LIFTED MARGINAL FILTERING

In the following, we show how this state representa-
tion can be used for Bayesian filtering [14]: BF itera-
tively computes the filtering distribution p(Lt+1|y1:t+1)
for time t + 1 from the previous distribution p(Lt|y1:t)
at time t and an observation yt+1. This calculation is
typically decomposed into two steps: The predict step
calculates the distribution after applying the transition
model p(Lt+1|Lt):

p(Lt+1) =
∑
lt

p(Lt+1|Lt = lt) p(Lt = lt|y1:t) (5)

Afterwards, the posterior distribution is calculated by
employing the observation model p(yt+1|Lt+1):

p(Lt+1|y1:t+1) =
p(yt+1|Lt+1) p(Lt+1|y1:t)

p(yt+1|y1:t)
(6)

A. Probabilistic Multiset Rewriting Systems

BF can be performed directly on lifted multiset states,
by using a multiset rewriting system to describe the
transition model. Thus, LiMa can be seen as some
variant of a CCBM (i.e. the transition model is described
symbolically by precondition-effect actions).

More specifically, we use a probabilistic multiset
rewriting system (PMRS) [2]. An action a is a triple
(c, f, w), where c is a list of preconditions, f is an effect
function and w is a weight. As we use structured entities,

2δx is the Kronecker delta, i.e. the distribution that is 1 for x and
0 otherwise.

the preconditions are formulated in terms of constraints
on the entities (i.e. as boolean functions of entities),
e.g. testing for existence of a property or for a specific
value of a property. An action can have more than one
precondition, i.e. more than one entity can participate in
an action.

As we use lifted states, preconditions can be indeter-
minate with respect to some state: For example, the lifted
state in Equation 4 is indeterminate for the precondition
“Name=Spoon”, as the precondition is true only for some
part of the support of the corresponding distribution. In
this case, we need to perform a splitting operation [8]
, which splits the lifted states in multiple lifted states
such that the precondition is determinate for each split
product.

Actions are applied to states by binding entities from
the state to the preconditions. We call a pair of action
a and a list of bound entities i an action instance. The
effect manipulates the state based on the bound entities.

For example, consider the action wash that can be
applied to any object and has the effect that the object
is clean afterwards. This action has two valid action in-
stances (i.e. each bound entity satisfies the precondition,
and i ⊆ r) for the state in Equation 4: a1 = (wash, ec)
and a2 = (wash, ed). Applying these action instances to
the state l leads to the successor states, apply(a1, l) =
l′1 = J 2ec, 1ed K and apply(a2, l) = l′2 = J 3ec K.

The multiplicity µl(a) of an action instance a is the
number of of ways the bound entities in a can be
chosen from l. The normalized product of multiplicity
and weight defines the probability p(a|l) that a specific
action instance a is applied in l. The action distribution
p(a|l) defines the transition model as follows:

p(l′|l) =
∑

{a|apply(a,l)=l′}

p(a|l) (7)

B. Approximate Filtering

Even when using the lifted state representation de-
rived in Section III, the number of states that need
to be tracked can become very large. This issue is
tackled by approximating p(Lt|y1:t) by a set of weighted
samples (called particles). The resulting algorithm is
called particle filter [1]. Here, we use a variant of the
particle filter for categorical domains called marginal
filter (MF) [12]. The MF works by computing Equations
5 and 6 exactly, and then sampling n particles from
the posterior p(Lt+1|y1:t+1) without replacement. We
use the resampling strategy presented in [11], which
is optimal (in the sense of least squared error) and
unbiased.

C. Merging

Over time, the lifted state distribution can degenerate
due to symmetry breaks (splitting operations), such that
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it does not exhibit any exchangeability, and resorts to
the ground state representation. To prevent this, we
introduce a merging operation, that projects the value
distribution back to an exchangeable distribution. The
merging operation we use in this paper simply projects
all values of the name property back to a uniform
distribution of permutations.

The question is when this operation should be sensibly
applied during filtering: In the worst case, the next
transition requires a split, such that no reduction in
representation size is obtained, and information about
object identity that is necessary in the transition has been
discarded.

However, in the scenario we are considering, we know
that after a specific action was performed, some object
identities are not needed again: After cooking, it is
never necessary to distinguish the pot from the other
objects, after drinking we do not need to distinguish the
glass, and so on. Thus, we can create a domain-specific
merging operation that is applied whenever we can safely
“forget” object identities.

V. EXPERIMENTAL EVALUATION

The overall goal of the experiments was to show
how the lifted state representation can be beneficial (as
compared to the ground state representation used in the
conventional marginal filter) in a real-world setting, as
opposed to the artificial or simulated scenarios investi-
gated previously. More specifically, two related aspects
were investigated: (Q1) Can inference complexity be
reduced by using a lifted state representation, in terms of
representation size of the filtering distribution; and (Q2)
can this lead to a higher estimation accuracy, given a
fixed computational effort (in terms of allowed number
of particles)?

Note that activity recognition accuracy in comparison
to other (data-driven) methods is not of major concern
in this study: As argued above, fine-grained causal
models have advantages in itself (inference of context
information, reduced need for training data), that justify
that activity recognition accuracy of these models is not
significantly better than of data-driven approaches.

A. Trial Setting and Model
The evaluation is performed on a dataset obtained

from subjects performing kitchen activities, as described
in Section II. This domain was chosen as it is sufficiently
complex and has a non-trivial causal structure.

The dataset is available at [6] and has been used
in multiple previous studies [7], [12]. Out of the 30
IMU signals sampled at 120 Hz, 180 features such as
variance and energy were computed with a window size
of 128 samples and 75% overlap. Afterwards, a principal
component analysis was performed, and the 21 principal
components with the largest eigenvalues were selected.

TABLE I: Factors and levels of experimental design.

Factor Levels

Model QDA, HMM, MF, LiMa
Observations Action Classes, IMU data
Subject 1, . . . , 7
Run 1, . . . , 10
Particles 25, 50, 100, 200, 500, 1000, 2000, unlimited

In the resulting dataset, each action has a distinct
duration distribution, which is not necessarily a geo-
metric distribution, thus requiring to model the duration
distribution explicitly, by concepts similar to hidden
semi-Markov models [16]. This, however, adds another
layer of complexity and additional parameters, which we
wanted to avoid in this work. Therefore, we reduced
the dataset such that each action lasts for exactly one
timestep, by sampling one observation for each segment
where the same action is executed.

We modeled the domain as a PMRS: Each object
shown in Figure 1, as well as the agent, is modeled as
an entity, and a set of PMRS actions has been created
to model the causal structure of the domain. The action
weights are chosen according to a goal distance heuristic
(where the goal is that the meal has been finished and
all objects are washed), based on the task script [7].

We investigated two different observation models
p(yt|lt): (i) Crisp observations of the actual action class
ct, i.e. p(yt|lt) = 1[at=ct] where at is the action
executed in lt; and (ii) we used the preprocessed real
sensor data as observations, and assumed p(yt|lt) to be
a multivariate normal distribution, conditional on each
action class, i.e. p(yt|lt) ∼ N (µat ,Σat).

B. Experimental Design

We used a factorial experimental design with the
factors depicted in Table I. For each configuration,
10 filtering runs have been performed to assess the
variability due to randomness in the resampling step.
We compared our approach (LiMa) with a previous
inference algorithm (MF [11]) that is identical to LiMa,
except that it maintains the ground state representation
p(S) directly instead of the lifted state representation.
Furthermore, experiments with two baseline classifiers,
quadratic discriminant analysis (QDA) and a hidden
Markov model (HMM), have been performed.

The evaluation is not performed as a cross validation,
which would have been methodologically infeasible con-
sidering the construction of the causal model. Therefore,
to not place baseline models at a disadvantage, they are
also built on the complete data.

VI. RESULTS

Figure 2 shows the number of particles necessary to
exactly represent the filtering distribution p(St|y1:t) over
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Fig. 3: Left: Comparison of activity recognition accuracy for baseline models, marginal filter (MF) and lifted
marginal filter (LiMa), using 2000 particles. Right: Accuracies and their variance for lifted and ground inference.
Each point represents the mean accuracy over all 7 datasets and 10 runs, given a limited number of available
memory units. The boxes show the quartiles of the accuracies.

time for one specific subject (using the crisp action
class observations). The figure also shows, for each
object, in what fraction of the lifted states that object
is represented explicitly, illustrating when splitting and
merging operations have been performed. LiMa always
requires at most the same number of particles than MF,
and often less.

The figure shows that during inference, there are
phases where certain objects need to be identified: Cook-
ing is only possible when the pot is located on the stove,
water can only be filled in the glass, and so on. In
other phases, no object at all needs to be represented
explicitly: For example, in the washing subtask, it is not
necessary to know which object is washed, we only need
do distinguish between clean and dirty objects. In these
phases, ground inference is typically of high complexity,
as permutation effects lead to a combinatorial explosion
in the number of possible states. Lifted inference leads
to a reduction in representational complexity here, by
representing all object permutations of otherwise iden-
tical states in a single particle. In Figure 2, this can be

seen from timestep 34 to 42 (preparing the table) and
from timestep 70 onwards (washing the dishes).

Figure 3 (left) shows the mean accuracy of the
baseline classifiers and the causal models (using 2000
particles). The HMM has a (slightly) better accuracy than
the causal models (HMM: 0.59, LiMa and MF: 0.56).
However, this 16-state HMM has 272 parameters (16
prior values and 16×16 transition matrix) – as no cross
validation is performed in this study, we suspect that the
HMM is subject to overfitting, and thus its accuracy is
overestimated.

Figure 3 (right) shows the mean accuracy of MF and
LiMa (for 7 subjects and 10 runs each) for different
numbers of available particles. Both algorithms reach
saturation at 1000 or 2000 particles, such that a further
increase in the number of particles has no (or only a
small) effect on accuracy. However, LiMa reaches satu-
ration with fewer particles, such that the mean accuracy
of LiMa is higher when 50, 100, 200 or 500 particles
are available.
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VII. RELATED WORK

Lifted probabilistic inference [4] describes a class of
inference algorithms that exploit symmetries and redun-
dancies of the distributions for efficient inference. Lifted
inference can be seen as decomposing a distribution
into exchangeable components and handling sufficient
statistics of them [9]. In LiMa, the same concepts are
used, as we decompose p(S) into products of exchange-
able distributions p(V |R) and a remaining part p(R).
Ideas from lifted inference have been applied to dynamic
domains in the relational Kalman filter [3], which is
restricted to Gaussian filtering distributions and a linear
transition model.

The primary reason that prevents the direct application
of lifted inference algorithms for inference in our causal
models are the hard constraints in the transition seman-
tics: Entities can only bind to actions when they satisfy
the preconditions, only a single action is performed per
timestep, etc.

A BF algorithm that, similar to LiMa, uses particles
that each represent a distribution of specific states is
the relational particle filter [10]. It uses particles where
some variables have specific values and others are rep-
resented by parametric distributions. Opposed to LiMa,
the approach is not concerned with efficient represen-
tations of exchangeable distributions, and thus cannot
efficiently handle the identity permutations occurring in
our application domains. Furthermore, in cases where
LiMa performs a split, the algorithm samples from the
corresponding distributions, instead of manipulating the
exact distributions on a parametric level.

VIII. CONCLUSION

In this paper, we investigated whether LiMa can be
applied successfully to a real-world activity and context
recognition task. We answered this question affirma-
tively, by showing that LiMa needs fewer particles to
represent the exact filtering distribution (specifically,
in phases where ground inference requires the largest
number of particles due to permutation effects), and
that it can be more accurate than conventional ground
inference (MF). Still, LiMa retains the advantages of
causal, symbolic models in comparison to data-driven
methods (reduced need for training data, reasoning about
the context of activities).

However, this study is still only a fist step for using
lifted filtering methods in real, online activity and context
recognition systems, e.g. as part assistive systems: First,
we did not attempt to properly model the duration
distribution of the actions, which means that accuracy
values obtained here are not directly comparable to
results obtained in other studies (this affects all methods
equally, therefore model comparison within this study
should be valid). How to model duration distributions

in symbolic models has already been investigated in
previous studies [7] and similar concepts can be applied
to LiMa.

Most importantly, the merging operation we used
here is domain-specific, requiring prior knowledge about
the causal structure of the domain. Developing more
general merging operations, that do not require domain
knowledge (e.g. by analyzing the causal structure auto-
matically) is a topic for future research.
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and Thomas Kirste. Sequential Lifted Bayesian Filtering in Mul-
tiset Rewriting Systems. In UAI Workshop: Statistical Relational
Artificial Intelligence, 2017.

[16] Shun-Zheng Yu. Hidden semi-markov models. Artificial intelli-
gence, 174(2):215–243, 2010.

CoMoRea'19 - 15th Workshop on Context Modeling and Recognition

88


