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Abstract—Voice command smart home systems have become a
target for the industry to provide more natural human computer
interaction. To interpret voice command, systems must be able
to extract the meaning from natural language; this task is
called Natural Language Understanding (NLU). Modern NLU is
based on statistical models which are trained on data. However,
a current limitation of most NLU statistical models is the
dependence on large amount of textual data aligned with target
semantic labels. This is highly time-consuming. Moreover, they
require training several separate models for predicting intents,
slot-labels and slot-values. In this paper, we propose to use a
sequence-to-sequence neural architecture to train NLU models
which do not need aligned data and can jointly learn the intent,
slot-label and slot-value prediction tasks. This approach has been
evaluated both on a voice command dataset we acquired for the
purpose of the study as well as on a publicly available dataset.
The experiments show that a single model learned on unaligned
data is competitive with state-of-the-art models which depend on
aligned data.

Index Terms—Natural Language Understanding, Smart Envi-
ronments, Deep Neural Network, Voice-User Interface

I. INTRODUCTION

Smart-homes with integrated voice-user interfaces (VUI)
can provide in-home assistance to aging individuals [1], allow-
ing them to retain autonomy [2]. It is also a domain of great
interest for the industry [3]. Such systems usually include sev-
eral modules, such as Automatic Speech Recognition (ASR),
Natural Language Understanding (NLU) and Decision Making
modules. The NLU module takes as input a transcript of the
voice command provided by the ASR module and extracts
its meaning in a form that can be processed by the Decision
Making module.

To ease the interpretation of the utterance, voice command
systems tend to impose a strict command syntax. However,
studies on the interaction of elderly people with smart en-
vironments show that they were inclined not significantly
deviate from the imposed grammar of the commands [2], [4],
[5]. Among these deviations from the grammar, there were:
misuse of keywords (name of the system that is supposed
to trigger the NLU module), taking too long a pause within
sentences, adding polite forms (“please”, “could you...”), using
the infinitive form instead of the imperative, ungrammatical
sentences, using out-of-vocabulary words, etc.

This work is part of the VOCADOM project founded by the French National
Research Agency (Agence Nationale de la Recherche) / ANR-16-CE33-0006.

Thus, the system that only processes well-formed com-
mands does not seem flexible enough, which creates the need
for a NLU system based on data rather than rules. However,
statistical approaches used to rely on a high amount of aligned
data such as in the BIO model [6] in which every single word
of an utterance must be labeled as being part of a specific
slot or not. Unfortunately, most new application domains
will not have such a dataset available. In particular, in the
domain of the smart home voice interaction, there is currently
no such a dataset available which limits the development
and reproducibility of the voice command system in smart
environments. The closest datasets are either voice based but
without voice commands [7] or designed for other tasks [8],
[9].

To tackle this problem, in this work, we present an approach
to learn NLU models from synthetic and unaligned data.
Section II introduces the task, the sequence-to-sequence neural
NLU model as well as the synthetic data generation method
used to address the lack of data. In Section III, the collection
of a multimodal dataset of voice interactions in a real smart
home is briefly introduced. This dataset is used to evaluate the
NLU models. This section also contains evaluation of seq2seq
and the state-of-the-art NLU models trained on artificial data
and evaluated on the collected data. Subsequent experiments
show the influence of different input representations on the
NLU performances. The paper ends with a short discussion
and conclusion.

II. NATURAL LANGUAGE UNDERSTANDING TASK AND
METHOD

A. NLU as slot-filling

One of the most popular ways of addressing the NLU
problem is slot-filling which consists in extracting the overall
intent of an utterance and identifying the most important
elements called slots. The intent reflects the intention of the
speaker while the slots can be defined as the entities and
relations in utterance which are relevant for the given task [10].
For instance, in the utterance "Turn on the lamp", the
intent is to act on a device (set_device) while the details of
this action are in the slots action=turn_on="turn on"
and device=light="lamp". Here, a slot is com-
posed of its label (action, device), its normalized
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value (turn_on,light), and the text associated to it
("turn on", "lamp").

Typically, NLU systems treat intent recognition as a clas-
sification task over the whole sentence while slot labeling
is addressed using a sequence labeling approach. Such NLU
systems as Triangular Random Conditional Field (Tri-CRF)
[11], attention LSTM RNN (attRNN) [6], and open source
commercial tool RASA1 were developed for this approach. All
these systems need aligned data such as exemplified below:

"text": "Turn on the lamp",
"intent":"set_device",
"entities":[
{
"start":0,
"end":22,
"entity":"action"
"value":"TURN_ON"
"text":"Turn on"
},
...
],
...

Tri-CRF and attRNN predict the intent and slot-labels si-
multaneously while RASA requires training 2 separate models
– one for the intent prediction, and – another for slot-label
prediction. Moreover, neither Tri-CRF nor attRNN are able
to learn slot-labels and slot values at the same time. Hence,
two separate models are needed to perform label and value
prediction.

In this paper, we propose one model to perform intent,
slot-label and slot-value jointly on unaligned data. For in-
stance, from the input "Turn on the lamp" the model
should output a sequence like this intent[set_device],
action[TURN_ON], device[lamp] which is sufficient
for decision making.

B. Learning model

Classical seq2seq model architecture [12] has been studied
on various NLP tasks including NLU [13]. A typical seq2seq
model is divided into an encoder – which encodes the input
sentence into fixed-length vector–, and a decoder – which
decodes the vector into a sequence of words. Both the en-
coder and decoder are generally Recursive Recurrent Networks
(RNN). This model is able to treat a sequence of words of
variable size and has become the standard approach for many
Natural Language Processing tasks. Briefly, a recurrent unit,
at each step t takes an input xt and a previous hidden state
ht−1 in order to compute its hidden state and the output using:

ht = σh(Whxt + Uhht−1 + bh),

yt = σy(Wyht + by),

where yt is the output vector at each step; W,U, b are the
parameters of the neural layer and σh and σy the activation
functions of the neural layers. Once the encoder read the
entire input sequence of words (i.e., it read the special token

1https://rasa.ai/products/rasa-nlu/

< EOS >), the last hidden state ht is passed to the decoder
which begins to output a sequence of words using the previous
hidden state and the previous predicted vector as input (using
the special < SOS > token as trigger) until it generates the
end of a sequence (i.e., < EOS >).

In most NLP tasks, to prevent the exploding/vanishing
gradient problem and to model long dependencies in the se-
quence, Long Short-Term Memory (LSTM) or Gated recurrent
units (GRUs) are used as basic units of RNN. Furthermore,
to enable the decoder to base its prediction not only on the
previous word and hidden state, but also on the hidden states
of the input, the attention mechanism was introduced [14].
In that case, the decoder uses other information during the
decoding which is the context vector c. At each step i and
based on the input sequence length Tx:

ci =

Tx∑
j=1

αij hj .

The weight αij is computed as follows:

αij =
exp(eij)∑Tx

k=1 exp(eik)
,

where eij is computed as follows:

eij = a(si−1, hj).

eij represents an alignment or attention model that tells the
decoder at step i which part of the hidden state of the input
sequence to attend. The alignment model a can be a simple
feed-forward neural network jointly trained with the rest of
the architecture. The probability αij , reflects the importance
of hj with respect to the previous hidden state i − 1 of the
decoder in deciding the next state i and generating the output.
Hence the decoder decides which parts of the source sentence
to pay attention to. This is particularly useful when the next
slot information to output depends on an input word far away
in the input sequence.

Apart from bringing the ability to learn from unaligned data,
the seq2seq model has two other very interesting features for
our task.

1) seq2seq can be trained using two input representations:
word and character. While word input representation is
the most frequent, it generally fails to address unseen
words in the input. Character-based input representation
treats the input sequence character by character, and has
been shown to be able to learn sub-word representations
and to process unseen words [15], [16]. However, a
model trained in the character mode would have to learn
spelling of words which is computationally more expen-
sive. Thus, the two representation modes are investigated
in this work.

2) Since the decoder uses the first prediction as input to the
second step of the decoding, we supposed that predicting
the intent first will help predicting the following slots.
It seems intuitive since each intent is associated with a
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certain set of slots. Therefore we assessed this hypothe-
sis by training two separate seq2seq models: one on the
dataset with slots only and another one on the dataset
containing intents coupled with slots.

To be able to train seq2seq models we followed the method-
ology similar to the one used in [17]. Seq2seq models were
trained on an artificially generated corpus and were tested on
a real corpus. For the sake of comparison, we also trained and
tested seq2seq models on the publicly available spoken dialog
corpora PORTMEDIA in the domain of festival show booking.
The corpora used for training and testing are described in the
following sections.

C. Corpora
1) Artificial corpus: To solve the problem of the absence of

French domain specific training data, an artificially annotated
corpus was generated using a Feature Grammar class of
Python’s NLTK library [17]. Below is a training example: the
sentence "can you close the blind":
"text": "KEYWORD tu peux fermer le store",
"intent": "set\_device"
"entities": [
{
"start": 16,
"end": 22,
"entity": "action",
"value": "CLOSE",
"text": "fermer",
},
{
"start": 23,
"end": 31,
"entity": "device",
"value": "blind",
"text": "le store",
}

],
}

The phrases of the dataset were generated from their
corresponding semantic representations, each one containing
an intent and one or more slots. For generating the phrase
"Turn on the light" (Allume la lumière)
which is defined by an intent set\_device and the
slots action and device,a rule was created where
Dact\_set\_device is the predicate, rewritten into the
predicates defining the slots:

set_device[ACTION=?s,Location=?l, Device=?d] ->
Slot_action[ACTION=?s], Slot_device[ALLOWABLE\_ACTION=?s,

Location=?l, Device=?d, ARTTYPE=?a]

Each predicate has attributes given in square brackets. For
example, Slot_action and Slot_device has attributes
ACTION and ALLOWABLE_ACTION which must have the
same value (expressed by ?s). This allows us to generate only
meaningful commands, i.e. commands consisting of allowable
actions applied to certain devices, for instance commands
to turn on only devices that can be turned on. Each device
has a list of allowable actions in the specification file of the
grammar.

Each of the slots is further rewritten into words using the
rules of the grammar.

As a result of this generation process, the artificial dataset
contains 8 intents. The examples of the phrases below are
translated from French; the frequencies of each intent are
given in parenthesis:
Contact Call my daughter (595)
Set_device Start the boiler (17375)
Set_device_group Turn all lights of the kitchen on (10475)
Set_device_property Increase the volume of the TV (5250)
Set_room_property Raise the temperature in the room (2640)
Check_device Is the radio on? (1868)
Check_device_group Are the doors closed? (3982)
get_world_property What is weather like? (10)

To avoid generating nonsensical phrases like ”Turn on the
oven in the bathroom”, the generation is constrained by the
usual location of devices. Other location features such as floor
location were added for variation. For instance, instead of
just generating the sentence ”Turn on the oven in the kitchen
downstairs”, ”Turn on the oven in the kitchen upstairs” is also
generated. Both sentences are meaningful.

2) Real data: Two other small datasets collected in realistic
conditions were used: The VocADom@A4H and SWEET-
HOME corpora. The SWEET-HOME corpus was collected
in the smart home DOMUS, equipped with microphones for
speech recording, sensors for providing information on the
user’s localization and activity [18]. The VocADom@A4H
corpus was collected in the smart home Amiqual4Home [17]
and will be described in detail in III-A. The corpora were an-
notated following the same annotation scheme as the artificial
corpus.

Finally, we also used the PORTMEDIA corpus in our study.
It is a dataset of telephone conversations collected from the
ticket reservation service for the festival of Avignon in 2010
[19]. It contains 700 annotated dialogues. While this dataset
is not related to smart home it is the only available in French
of that size and quality. It will be used in the experiment as a
benchmark to assess the genericity of the approaches.

Table I presents the statistics for all corpora.

TABLE I
COMPARISON OF THE USED CORPORA: ARTIFICIAL, VOCADOM@A4H,

SWEET-HOME AND PORTMEDIA.

Parameters Artif2 VocADom@A4H Sweet-Home PortMedia
phrases 42195 1646 727 18026
words 156 285 120 3062
characters 43 44 42 71
intents 8 6 7 4
slot-labels 16 11 7 32
slot-values 60 44 24 378

These two kinds of corpora used in this work - a big
dataset of conversational real data PORTMEDIA and the
artificial corpus show significant differences. PORTMEDIA
contains only 4 types of intent, while the artificial corpus
contained 7; therefore the task of intent prediction is more
challenging in the case of the artificial corpus. However,
regarding slots PORTMEDIA contains a richer set of labels
and values making it more challenging on this respect.

For the need of the study, the dataset were converted into
the sequence-to-sequence format. Below is a training example:
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Input: "close the door"
Output: intent[set_device], action[close],

device[door]

As it can be noticed in this example, the intent is included
into the sequence of slot as first token. The intent values
and slot values are included in square brackets. Slot-labels
were separated from slot-values so that models can learn
them separately. The intent was put as the first element in
the sequence because it was supposed that generating the
intent first will help to predict the following slots since slots
distribution tend to depend on the intent.

D. Learning methods

The seq2seq model used in this paper is the attention-
based encoder-decoder GRU Bidirectional RNN. The number
of embedding units was 128, the number of encoder’s and
decoder’s units was 128. Optimization algorithm was Adam
at a learning rate of 0.0001. Batch size was 32. All these were
default parameters of the seq2seq library that was used in the
experiments2.

As for the number of training steps and input/output se-
quence length, they are presented in the table II. The optimal
input/output sequence size was calculated from the corpus.
The training and test sets as well as the modes are specified
in the same table.

TABLE II
OVERVIEW OF SEQ2SEQ MODEL LEARNING SCHEMES (W/I STANDS FOR

WITHOUT INTENT”, ARTIF REFERS TO ARTIFICIAL CORPUS)

No Train Test mode nb steps I/O seq len
1 Artif+SWEETHOME VocADom@A4H word 150 000 50/100
2 PORTMEDIA PORTMEDIA word 150 000 150/50
3 Artif+SWEET-HOME VocADom@A4H char 50 000 100/150
4 PORTMEDIA w/i PORTMEDIA w/i word 150 000 150/50
5 PORTMEDIA w/i PORTMEDIA w/i char 50 000 300/100

To see how seq2seq models perform compared to the base-
line, we will compare the models number 1, 2 and 3 from the
table II with the baseline models. To see how seq2seq models
perform in the word mode compared to the character mode, we
are going to compare the models 1 and 3 between themselves.
To see if the prediction of intent helps the prediction of slots,
we trained models 4 and 5 on PORTMEDIA without intent
(model 4 in the word mode, model 5 in the character mode)
and we are going to compare them with seq2seq models
trained on corpora with intent.

As for the baseline Tri-CRF, RASA and attRNN, there were
two models for each of them: one trained on the artificial
corpus and tested on VocADom@A4H, another trained and
tested on PORTMEDIA. It is necessary to remind that each
of these baseline models comprises 2 or 3 separate models
for predicting intents, slot-labels and slot-values. Compared to
three above-mentioned models – Tri-CRF, RASA and attRNN
– seq2seq has as advantage that it does not require the
alignment of slots of text segments, and it only requires

2https://github.com/google/seq2seq
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Fig. 1. Ground floor: kitchen and living room.

training of one model for intent, slot-label and slot-value
prediction.

III. EXPERIMENT AND RESULTS

In this section, after a brief description of the collection of
the realistic test dataset, the NLU experiments are reported.

A. VocADom@A4H dataset collection

In this work, the pilot smart home was the instrumented
apartment of Amiqual4Home3. It serves as a realistic show-
room for products and services for smart homes, and as a tool
for user experiments [20]. This 87 m2 Smart Home is equipped
with home automation systems, multimedia controller, and
means for observing human activity. The kitchen and the living
room are on the ground floor (Fig. 1), the bedroom and the
bathroom on the first floor. A dedicated hidden control room
allows to centralize the recording of all the sensors and control
all the devices remotely.

This Smart Home is fully functional and equipped with sen-
sors, such as energy and water consumption, hygrometer and
actuators able to control devices, lighting, shutters, multimedia
diffusion, distributed in all rooms. Overall, it contains more
than 500 controllable or observable items. In addition, 6 cam-
eras are set up in the ceiling of the rooms. Home automation
sensors and actuators (e. g., lighting, shutters, security systems,
energy management, heating, etc.) are connected to a KNX4

bus system (standard ISO/IEC 14543). Besides KNX, several
field buses coexist, such as UPnP (Universal Plug and Play)
for the multimedia distribution, X2D for the contact detection
(doors, windows and cupboards), RFID for the interaction
with tangible objects (not used in the VOCADOM project).
The management of the home automation network, sending
commands to the different actuators and receiving changes of
sensor values, is operated through openHAB5.

To build a realistic dataset, eleven participants were guided
to performed activities of daily living for about an hour and
to utter voice commands while doing so. The experiment was
divided into three parts:

1) elicitation of voice commands: the participants were
given images representing scenarios and had to guess
how to utter commands to respect these scenarios.

3https://amiqual4home.inria.fr
4https://www.knx.org/
5https://www.openhab.org/

PerDial'19 - The 1st International Workshop on Pervasive Computing and Spoken Dialogue Systems Technology

835



Images were chosen so that people were not lexically
constrained and had thus to use their own words to
express their intention.

2) multi-resident commands: a second participant entered
the rooms and they both followed a scenario in which
voice commands had to be uttered. They were not always
in the same room.

3) background noise: the participants were given a list of
phrases to read(e.g., I lock the door, Vocadom turn down
the light, téraphim turn off the radio in the bathroom,
. . . ) while a background noise was present (e.g., music,
fan . . . ).

Data logging of all sensors and the control of the home au-
tomation system were performed from an hidden control room.
Participants’ voice commands were executed in a Wizard of
Oz manner. The participants were not informed whether the
system was automatic or not. In the following we refer to this
resulting dataset as the VocADom@A4H dataset.

The audio part of the corpus was transcribed using Tran-
scriber6 while the semantic annotation of the voice commands
for Natural Language Understanding (NLU) was performed
using a web-based tool that was developed as part of our
project. The total number of corpus commands was 1646 (not
counting the sentences which were not commands).

It should be noted that while the SWEET-HOME corpus
contains only read utterances, the VocADom@A4H contains
spontaneous and read utterances.

B. learning results

The table III sums up the performances of the baseline
models Tri-CRF, RASA and attRNN and seq2seq models on
the VocADom@A4H corpus.

TABLE III
NLU MODELS F-MEASURE (%) PERFORMANCE ON VOCADOM@A4H

DATASET (SH STANDS FOR SWEET-HOME)

Model Corpus train Intent Slot-label Slot-value
Tri-CRF Artificial 85.84 79.95 63.27
Att-RNN Artificial 96.70 74.27 65.05
RASA Artificial v1 76.57 79.03 61.95
seq2seq, word Artificial + SH 94.74 51.06 34.95
seq2seq, char Artificial + SH 72.31 67.33 41.00

The three baseline systems Tri-CRF, Att-RNN and RASA
exhibit the best performances for all three tasks over the
seq2seq models. However, the baseline systems were trained
on aligned data while the seq2seq models were not. The
seq2seq model using the word mode shows competitive intent
classification performance but this task is not dependent on
alignment. It is interesting to note that seq2seq using the
character mode shows better performance that in the word
mode for slot tasks.

To assess the performance of the models we also evaluated
them on the PORTMEDIA corpus. The corpus was divided in
a test set (10%), dev set (10%) and a train set (80%). This

6http://trans.sourceforge.net/

is reported on Table IV. Again the three baseline systems
Tri-CRF, Att-RNN and RASA exhibit the best performances
reaching about 95% for all three tasks. This shows that the
models have been satisfactorily implemented and that the
VocADom@A4H corpus is actually more difficult than the
PORTMEDIA one according to the F-measure. This is also
supported by the seq2seq using the character mode that
performs better on PORTMEDIA than on VocADom@A4H
but which is still far below the baseline.

TABLE IV
F-MEASURE (%) PERFORMANCE OF ALL SYSTEM ON PORTMEDIA

TEST-SET (10% OF THE TOTAL)

Corpus train Model Intent Slot-label Slot-value
PORTMEDIA Tri-CRF 96.36 95.39 92.32
PORTMEDIA Att-RNN 97.56 96.11 95.08
PORTMEDIA RASA 92.26 94.16 93.34
PORTMEDIA seq2seq, word 97.08 64.21 58.06
PORTMEDIA w/i seq2seq, word 66.09 54.40
PORTMEDIA w/i seq2seq, char 63.42 53.22

IV. DISCUSSION

The first outcomes of the experiment is that all models
show much better results on PORTMEDIA dataset than when
trained on the artificial corpus and tested on the realistic corpus
VocADom@A4H. This shows how difficult it is to account
for the diversity of a realistic corpus compared to that of
an artificial corpus. One possible reason is that the realistic
corpus has been recorded with naive participants and that it
contains significant variations of vocabulary and syntax with
respect to the artificial corpus: repetitions, disfluencies and
interjections (euh), keywords appearing at different positions
etc. This results in utterances that are syntactically different
from the artificial dataset. In addition, the vocabulary of the
realistic corpus is bigger: 285 words for VocADom@A4H
against 156 words for the artificial dataset leading to a high
number of OOV words, with 142 words not occurring in the
artificial dataset. A 3-gram language model learned on the
artificial dataset shows a perplexity of 58 (without the < s >
tag) on the real corpus which is quite high for this task.

It should also be noted that seq2seq models are trained
on the artificial corpus in addition with the SWEET-HOME
corpus to ensure more lexical variability. Taking into account
these differences, it is nevertheless interesting to compare the
performance of seq2seq with state-of-the-art models. Seq2seq
showed a performance equivalent to those of RASA, att-RNN
and Tri-CRF, on the intent task but it did more poorly on the
slot task. However, these 3 models use slot alignment with
text segments of the input sentence, whereas seq2seq does not
require it. Moreover, seq2seq uses only one model for all tasks
while the other baselines uses from 2 to 3 models.

As for the different modes of seq2seq, we found that the
performance of the word mode is better on the intents but it
is worse on the slot-labels and slot-values, as compared to the
character mode. This may be due to the fact that the character
model is able to handle out-of-vocabulary words to a certain
extend. It is worth noting that the character model must learn
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the spelling of each word, but while this can be prone to error,
we did not observe much misspelled intentions or slots. We
can compare our results to those of study [15], which uses
seq2seq in the character mode on the corpus E2E [21], for the
task of generation, but not for the automatic understanding
task. On the positive side, they found that the model never
hallucinated (i.e., it did not produce irrelevant slots) and
produced very few repetitions. On the negative side, there were
sometimes omissions. In our case, the model produced a lot
of slot-value substitutions, for example, action[lower] instead
of action[turn on].

Finally, while intent prediction is typically considered as
a separate task from slot labeling, we also investigated the
effects of predicting intention within the sequence of slots. The
last two rows of the table IV show the results of predicting
the sequence of slots only, without the intent information. It
turns out that the presence of intention does not have much
influence on the prediction of the slots. Thus, first, intent
can be included in the slot sequence by keeping a great
classification performance (hence no need for a specific intent
classifier), second, this intent information in the sequence does
not seem to have strong side effect on the slot labeling task.

V. CONCLUSION AND FURTHER WORK

We showed that seq2seq models can be competitive com-
pared to the NLU models that require the alignment between
the segments of input phrases and semantic labels. Besides, our
seq2seq models only requires one model for all three tasks
- prediction of intent, slot-labels and slot-values. However,
several problems can be pointed out that call for further work.

For all the models of the study - trained on PORTMEDIA
or on the artificial dataset - the results of the prediction of slot-
labels and slot-values were much lower than on intent. One
reason for this may be the fact that the number of slot-labels
and slot-values is much higher than the number of intents. In
addition, some words with their corresponding slot-labels and
slot-values have been under-represented in the artificial dataset
(for example, the word temperature with the corresponding
slot-label room- property and its value temperature). In this
case, the models have shown near zero performance as they
tend to predict more common slot-labels and slot-values.
Hence one of the perspectives of the research is to ensure
the equal distribution of all elements – intents, slot-labels and
slot-values – during the learning.

Another perspective of the research is to collect more data
in realistic conditions of a smart-home and to add it to the
training dataset. Training the system on such a dataset would
enable the NLU system to process more complex syntax and
semantics.
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