
ERL: Edge based Reinforcement Learning for
optimized urban Traffic light control

Pengyuan Zhou∗, Tristan Braud†, Ahmad Alhilal†, Pan Hui∗†, Jussi Kangasharju∗
∗Department of Computer Science, University of Helsinki

†Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

Abstract—Traffic congestion is worsening in every major city
and brings increasing costs to governments and drivers. Vehicular
networks provide the ability to collect more data from vehicles
and roadside units, and sense traffic in real time. They represent
a promising solution to alleviate traffic jams in urban environ-
ments. However, while the collected information is valuable, an
efficient solution for better and faster utilization to alleviate
congestion has yet to be developed. Current solutions are either
based on mathematical models, which do not account for complex
traffic scenarios or small-scale machine learning algorithms.
In this paper, we propose ERL, a solution based on Edge
Computing nodes to collect traffic data. ERL alleviates congestion
by providing intelligent optimized traffic light control in real time.
Edge servers run fast reinforcement learning algorithms to tune
the metrics of the traffic signal control algorithm ran for each
intersection. ERL operates within the coverage area of the edge
server, and uses aggregated data from neighboring edge servers
to provide city-scale congestion control. The evaluation based on
real map data shows that our system decreases 48.71% average
waiting time and 32.77% trip duration in normally congested
areas, with very fast training in ordinary servers.

I. INTRODUCTION

Traffic congestion is continuously rising in most urban
areas around the world. Multiple factors contribute to this
situation, among which the increasing number of vehicles,
the inadequate infrastructure, and the distribution of points
of interests around the city. Traffic congestion affects the
environment, the individual wellbeing of citizens, and has a
considerable impact on the economy. In 2017, drivers spent on
average 102 peak hours in congestion in Los Angeles, 91 in
Moscow and New York City, 74 in London, and 69 in Paris [1].
Current solutions either rely on traffic center’s control or on
centralized cloud services such as Google map navigation.
However, the continuous increase in urban congestion shows
that these solutions need drastic improvement.

Traffic congestion includes a predictable part caused by traf-
fic increase and a non-negligible unpredictable part caused by
incidents. Several models already account for the predictable
part of congestion. However, to the best of our knowledge,
few studies focus on alleviating traffic congestion caused
by accidents and incidents. Moreover, although predictable
traffic congestion can be solved through long-term infrastruc-
ture investments, the consequences of incidents can only be
handled in real-time. For these reasons, the best solution to
mitigate the impact of traffic congestion is to empower the
signal timing plans with traffic-responsive capabilities while
notifying incidents and rerouting neighbor vehicles.

In this paper, we propose ERL, an integrated framework
to optimize traffic signals and keep drivers updated with the
newest traffic conditions. ERL divides the urban traffic into
areas defined at intersection, neighborhood and district level.
Each level is optimized by a ”local edge” device coordinating
the edge servers at lower levels. This modular design provides
fine-grained traffic optimization while considering the whole
city traffic in real time. As the three levels of optimization
run in parallel, a local area can optimize its traffic signal plan
quickly without waiting for city-scale orchestration. On the
other hand, ERL also allows reorganizing the traffic at a larger
scale in the case of massive congestion.

ERL’s architecture is massively distributed and relies on a
pervasive deployment of edge servers, including local monitors
at intersections and edge servers at base stations and aggre-
gation points. By focusing on a given small-scale area, ERL
allows to considerably simplify the algorithms implemented
in each server. For instance, the machine algorithms employed
within edge servers are specifically trained for a given area,
which limits the possible outcomes. This structure allows for
the deployment of specialized lightweight edgelets that require
minimal computing capabilities at each level.

The contributions of this paper are as follow: 1) Design of
ERL, an integrated framework for handling traffic congestion
in real-time at city-scale, 2) Usage of Reinforcement Learning
(RL) algorithms to automatically control the traffic signals
depending on the ingoing traffic. To the best of our knowledge,
ERL is the first reinforcement learning proposal to optimize
traffic signals on neighborhood scale (see section. II), 3) Ex-
tensive simulation based on real-world data to evaluate the
traffic improvement brought by ERL.

The rest of paper is structured as follows. We cover related
work in Section II. In Section III we present the overall
system design and traffic model. We give practical details
of our algorithm in Section IV and present our evaluation in
Section V.

II. RELATED WORK

Researchers have put a lot of effort into optimizing traffic
using data analysis based on auxiliary instruments and tech-
niques [2]. Most studies either adapt traffic lights or encourage
drivers to take better decisions to alleviate congestion [3]–[5].
ERL focuses on adapting traffic lights while providing the
required fast interactive controls required for rerouting drivers.

SmartEdge'19 - The Third International Workshop on Smart Edge Computing and Networking

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 849

Artificial intelligence: Most related works in this area nowa-
days adopt reinforcement learning algorithm with different
adaptations for specific goals. However, the action to take
mostly falls in two approaches: turning on/off the light di-
rectly [6]–[8] or change the light phase directly [9] based
on trained DNN. The obvious disadvantage of the former
approach is that immediately transitioning from the current
traffic signal phase to the selected action can cause incidents.
Though authors in [7] proposed to add additional traffic signal
phase configurations preceding the chosen action, different in-
tersections have varied traffic light phase group which require
a number of specific configurations. The same issue exists for
the latter approach, which also requires additional effort [9].

Moreover, these approaches require a large amount of
data to scale to multiple traffic lights,because they have to
determine the action for each intersection’s lights explicitly.
For instance, a typical intersection can easily have more than 6
phases and the training for 15 intersections requires more than
470 GB memory space. Albeit similarly, neighboring lights
still have differences in their traffic conditions, preventing
coupling to improve the overall performance. As such, local
decisions without awareness of neighborhood congestion can
hurt traffic control performance by disturbing any inherent
city-scale traffic balance through greedy local decisions.

Our proposal, on the other hand, adapt traffic lights indi-
rectly by tuning the thresholds of the phase control algorithm
in each intersection. With this design, ERL tunes the sen-
sitivities of traffic lights instead of changing them directly.
As such, adapting the sensitivities of neighboring traffic lights
as a group is reasonable since they experience similar traffic
conditions, while leaving each intersection some freedom to
decide its light phase depending on its own traffic condition.
ERL has much better scalability and faster DNN training.

III. SYSTEM DESIGN

In this section, we introduce the architecture of ERL and
describe the major communication processes. To provide a
comprehensive understanding of the system function, we also
include the processes of V2E (Vehicle to Edge) which is out
of the scope of this work (refer to our previous work [10]).

A. System Architecture

ERL involves around two key layers: the device layer
and the edge layer. The device layer includes the vehicles,
roadside buildings, infrastructures, traffic signals, intersection
monitors, and any other devices involved in the vehicular
network. In the rest of this paper, we assume there is at least
one device monitoring each intersection. This device embeds
video cameras facing all directions and is capable of wireless
communication. It therefore captures and transmits all nearby
traffic data. We assume the monitor and traffic lights at each
intersection are co-located and can transfer data to each other
freely and instantly. We call “client” any object in the device
layer that transfers data to the ES. The edge layer host the
ESes at the core of our architecture. We distribute these ESes
hierarchically in two tiers. The first tier (T1 ES) consists of

ESes co-located with the base stations at the access network
level1. Second tier ESes (T2 ES) are co-located with aggrega-
tion points in the core network. Our placement scheme provide
ESes with faster awareness of traffic condition, congestion, and
incident, while minimizing the average distance of vehicle to
edge and deployment cost. Finally, a remote cloud may provide
on-demand backup and aggregation capabilities, which are not
our major concern in this work. Please refer to [10] for more
details and communication processes.

B. Traffic Model

Due to space limitation, we briefly describe our traffic
model. We formulate our model based on a macroscopic
model [11] that yields a sufficiently accurate description of
the changing traffic flows in large areas (e.g. a central urban
area), given the road network, the traffic load and the traffic
conditions. Each ES controls the traffic lights in its covered
area. To avoid overlapped control demands from different
ESes, the assignment of traffic lights to ESes is predefined
by the system. Let us assume there are E T1 ESes in the
road network, each of which covers an area consisting of a
unidirectional link set Le = {Li|i = 1, ..., Ie} (e ∈ {1, ..., E}).
We use e to indicate both the index of ES and its covered area
in the rest of this paper. Each link represents a lane connecting
two subsequent intersections. Lane changing is not considered.

We assume the traffic lights in the urban area pertain to
a common signal timing plan, characterized by a fixed cycle
containing F phases. A phase refers to the time duration of
the green lights for a given direction. Let ni(k), Ni, Iint
respectively represent the number of vehicles in Li at the
beginning of the kth cycle, the capacity of Li, and the indices
of the internal links inside an ES-covered area. The problem
can be formulated as follows:

min
tf (k)

Ne(k) = min
tf (k)

1

N

[
N∑
k=1

∑
i∈Iint

ni(k)

]
(1)

for internal ES-covered area traffic optimization, where tf (k)
is the duration of phase fin the kth cycle, N e(k) is the total
number of vehicles in the area covered by ES e.

IV. ALGORITHM

The optimization process includes three parallel and inter-
active threads on three distinct levels, i.e., intersection level,
intra ES covered area level and inter ES covered area level,
respectively performed by traffic lights, T1 ESes and T2 ESes.
The basic optimization of traffic is performed by the individual
sets of traffic lights at each intersection. Each traffic light
set adapts its red and green light phases to minimize the
waiting queue at the intersection, thanks to phase adaptation
algorithms. At a higher layer, T1 ESes optimize the traffic
in their covered areas, by tuning the metrics of the traffic
light control algorithm across the intersections in the area. We
base the tuning of metrics on reinforcement learning. T2 ESes

1Base station in this paper refers to the entity at the edge of the fixed
network, e.g., BTS, eNB, and gNB.

SmartEdge'19 - The Third International Workshop on Smart Edge Computing and Networking

850

optimize the urban traffic, by tuning the degree of optimization
of each T1 ES according to the traffic density.
Intersection level: traffic lights are able to capture the length
of jam thanks to their embedded cameras, and adapt the
duration of phases based on a traffic light control algorithm.
This algorithm relies on the following parameters: the decision
time interval (time it takes to decide an adaptation) tdecide, the
decision threshold TH and the looking distance [12], [13]. For
each intersection, the traffic lights have an initial signal cycle
Tc, consisting of the phases of green lights in four directions,
respectively tE , te, tN and tntE , te, tN and tn We consider
two monitoring metrics on intersection level light adaptation:
the average vehicle speed and waiting queue length. ME ,
Me,MN and Mn indicate the number of vehicles waiting in
the aforementioned directions. After tdecide, if the ratio of
the monitoring metric is larger than the threshold, the system
extends the phase of green light for the direction with worse
performance. Meanwhile, it decreases the equivalent length
of the green phase for the opposite direction. We consider
Mratio
x = (Sy − Sx/Sy) to dictate the ratio of average speed

in direction x, Mratio
x = (Wx −Wy/Wx) to dictate the ratio

of waiting queue length in direction x, where y indicate the
opponent direction of x.
Intra area optimization: T1 ESes carry out internal traffic
optimization by tuning the metrics of traffic light algorithms
at the intersections in their coverage area. For simplicity, we
only consider the threshold metric TH of the intersection
level algorithm to be tuned. With I2E (infrastructure to edge)
communication, T1 ESes collect the monitoring data of their
covered area in close to real-time and tune the traffic lights
according to Algorithm 1. The optimization uses reinforcement
learning algorithm, based on a deep neural network to learn
the optimal traffic signal control metric. We adopted deep
Q-learning to provide an adaptive algorithm responding to
dynamically changing traffic condition. The advantage of Q-
learning for traffic signal control is described in more details
in a study by Abdulhai et al. [14]. Next, we define the intra
area state St, agent action At and reward Rt.

Intra Area State: ES e needs the following intra area infor-
mation to tune the metrics of traffic signal control algorithm:
traffic flow, average vehicle speed at each road and signal
control algorithm state. To represent the traffic flow and the
vehicle speed, we collect the number of vehicles in each lane
and their average speed into a matrix of traffic flow Fe and a
matrix of average vehicle speed Ve. The number of vehicles
in each lane is normalized by lane capacity and recorded at the
corresponding entry of matrix Ve. In the following equations,
Aᵀ represents the transposition of matrix A. The matrix Fe

of traffic flow for all roads in the area is defined as follows:

F = [n1(t), n2(t), . . . , nIe(t)]
ᵀ (2)

where ni(t) is the number of vehicles in lane Li at time t, Ie

is the number of lanes in the area covered by e. Similarly, the
matrix of average speed for all roads in the area is:

V = [v1(t), v2(t), . . . , vIe(t)]
ᵀ (3)

We use a vector TH to represent the threshold metrics of the
signal control algorithm of each intersection.

TH = [th1(t), th2(t), . . . , thIe(t)]
ᵀ (4)

where ni(t) is the number of vehicles in lane Li at time t, le

is the number of traffic lights in the area covered by e. At the
beginning of time step t, the agent observes intra area state
St = (F,V,TH) for intra area traffic control.

Agent Action: After observing intra area state St at the
beginning of time step t, the agent chooses one action At ∈
{−1, 0, 1}: decreasing, maintaining or increasing the value of
threshold metric th for each traffic light. The threshold TH
can be seen as the sensitivity of the light control algorithm: the
algorithm changes the green light phase more frequently with
a lower threshold. For instance, in a central area, the traffic
flow varies a lot from morning to evening, which requires a
higher sensitivity to adjust the signals. Rural areas, on the
other hand, can have small traffic flow all the time, which can
be satisfied with ”retarded” light control.

Reward: The reward is the change of the speed and number
of vehicles between two neighboring cycles as follows:

Rt = A ∗ (Vt+1 − Vt) +B ∗ (Nt −Nt+1) (5)

where A and B are weight metrics.
Agent Goal: The overall goal of ERL is to optimize the traf-

fic control. As a result, ERL makes the traffic flow smoother,
with shorter waiting times and higher average speeds in the
long run. The agent needs to find an action policy π∗ that
maximizes the cumulative future reward as follows (Q-value):

Qπ(s, a) = exp

[∞∑
k=0

γkRt+k|St = s,At = a, π

]
(6)

where γ is a discount parameter, 0 ≤ γ ≤ 1, reflecting the
weight the agent puts on future rewards. To put it another
way, the goal is to find following π∗:

π∗ = argmax
π

Qπ(s, a) (7)

Deep Neural Network (DNN): We use a simplified neural
network architecture. The network takes the state vector St
as the input, following two hidden fully connected layers of
2000 and then 3000 neurons with rectifier nonlinear activation
functions. The output layer is |At|l

e

(le is the number of traffic
lights) neurons with linear activation functions.

To decrease the output layer dimension, we propose to com-
bine the threshold adaptation of neighbor traffic lights. Since
our agent action is to tune the threshold value of the inter-
section level algorithm, combining the threshold adaptation of
neighbor traffic lights does not couple their phase adaptations.
To put it in a simpler way, we only couple the sensitivity
of neighbor traffic lights. Their phase changes depend on the
real traffic. We train the network using ADAptive Moment
estimation (Adam) [15] which fits for fast convergence and
satisfactory performance [16]. We adopt the ε-greedy method
to let the agent selects the action with the current biggest
estimated Q-value with probability 1−ε and randomly selects

SmartEdge'19 - The Third International Workshop on Smart Edge Computing and Networking

851

Algorithm 1 Intra ES area algorithm

1: Initialize DNN network with random weights θ;
2: Initialize ε,γ,N ;
3: for epoch = 1 to N do
4: Initialize intra ES area state S1;
5: Initialize action A0;
6: Start new time step;
7: for time = 1 to T seconds do
8: Based on observed state St,
9: the agent selects action At =

argmaxaQ(St, a; θ) with probability 1 − ε
and randomly selects an action At with
probability ε;

10: if At == At−1 then
11: keep thresholds unchanged
12: else
13: send new thresholds to the traffic lights in

covered intersections according to At
14: end if
15: Increment simulation by period t
16: The agent observes reward Rt and next state

St+1;
Store observed experience (St, At, Rt, St+1)
into replay memory M ;

17: end for
18: Randomly draw minibatch samples

(Si, Ai, Ri, Si+1) from M
19: Batch training: input state and targets and train

the network according to Eq. 6 and Eq. 7.
20: end for

one action with ε at each time period (see Algorithm 1). To
reduce cost, we adopt minibatch method. The agent randomly
draws a batch of samples from the replay memory M to form
input data and target pairs and update DNN weights θ by
Adam algorithm. In section. V, we test different action periods,
each of which corresponds to a feasible minibatch size.
Inter area optimization: Each ES coverage area can be
considered as a ”big intersection” in which the internal traffic
flow is optimized with intra area optimization. Since each
ES is placed in the cluster center based on traffic density, the
traffic flow between the ES coverage areas is more likely to be
lower. However, if ES areas are overlapping, the optimization
of a congested area may affect the other areas. That is to
say, if an ES relieves the congestion inside its covered area,
output links will have higher traffic flow towards neighboring
areas. These areas will then see their internal traffic flow
increase. For this reason, Tier 2 ESes optimize the inter area
traffic following the same methodology with the intersection
level algorithm, that is, slowing down the optimization of a
T1 ES area if its impact on neighboring areas outdoes the
improvement of its internal traffic. In this paper, we focus on
evaluating the first two optimizations, and leave the evaluation
for inter area optimization for future work.

The motivation behind this design is threefold: (i) Light
control on intersection level should be in real time, that

is, phase decision should be made by a simple algo-
rithm. Threshold-based algorithms fulfills this requirement. (ii)
Though being fast, threshold-based algorithms lack the ability
to optimize traffic light control facing different traffic condi-
tions and surrounded road maps. The reinforcement learning
algorithm tunes the thresholds in different intersections to
provide comprehensive optimization. (iii)The distribution of
ERL’s computational complexity fits the nature of infras-
tructure deployment, which is, intersection light with limited
resource works better with a simpler algorithm, which edge
server is capable of much heavier computation. Yet, for fast
computation and due to resource upper bound, it is reasonable
to assign local traffic light control to an edge server instead
of a larger scale task.

V. EVALUATION

We deployed an ES on a Linux server, with a single
core Intel(R) Xeon(R) CPU E5-2680 v4, 10GB of memory
partition, and an NVIDIA Tesla P100 GPU. The hardware
specification of our ES is similar to a cheap-priced edge server
in 2018 [17]. As such, we test the system performance without
relying on expensive hardware. We build our reinforcement
learning algorithm with Keras [18] and run the tests on the
Simulation of Urban MObility (SUMO) [19] simulator.

A. Simulation Settings

To extensively test our system, we focus on different metrics
that may influence the performance. The overall goal of the
simulations is to compare the system performance in different
scenarios, find out the best metrics, and suitable scenarios.
Map: We evaluate our system on real map data extracted
from Open Street Map (OSM) [20]. We select different scales
centering on Times Square, New York City, which is one of the
most congested area in the world. This area contains a dense
distribution of road and traffic lights, which fits our goal of
testing the system on traffic light control. Moreover, it gives
a lower bound of system performance with a large proportion
of unidirectional roads and not-four-direction traffic lights. We
test on two areas containing 67 and 127 traffic lights.
Traffic: We generate the traffic with a random algorithm,
that a specific amount number of vehicles are generated per
hour/lane-kilometer, each of which has a random departure and
destination road. We test on 100, 600 and 1200 vehicles per
hour/lane-kilometer. Taking 100V (vehicle) as an example, it
means that 400 vehicles will be generated on a 4-lane unidirec-
tional road per hour. Up-to-date public New York traffic data is
out of reach. Therefore, to map the generated traffic to real life,
we compare it with the traffic data in London central area2.
We find that 100V/h/lane−km is comparable with the peak
time traffic in central London (only with similar length roads).
Meanwhile, 600V/h/lane−km and 1200V/h/lane−km are
paranormal traffic volume which we only use to test the system
performance in extreme scenarios.
Monitoring metric: As introduced in section. IV, each in-
tersection can tune its traffic lights using the intersection

2https://data.gov.uk/dataset/gb-road-traffic-counts

SmartEdge'19 - The Third International Workshop on Smart Edge Computing and Networking

852

0

200

400

600

800

1000

1200

1400

100V 600V 1200V

W
ai

tin
g

tim
e(

s)

67/127 intersections

Speed (67)

Alg1 (67)

Speed (127)

Alg1 (127)

(a) Average waiting time.

0

200

400

600

800

1000

1200

1400

100V 600V 1200V

Ti
m

eL
os

s(
s)

67/127 intersections

Speed (67)

Alg1 (67)

Speed (127)

Alg1 (127)

(b) Average time loss.

0

20

40

60

80

100V 600V 1200V

De
pa

rt
De

la
y(

s)

67/127 intersections

Speed (67)

Alg1 (67)

Speed (127)

Alg1 (127)

(c) Average depart delay.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

100V 600V 1200V

Du
ra

tio
n(

s)

67/127 intersections

Speed (67)

Alg1 (67)

Speed (127)

Alg1 (127)

(d) Average trip duration.

Fig. 1: Statistics on different scales

0

200

400

600

800

1000

1200

100V 600V 1200V

W
ai

tin
g

tim
e(

s)

Number of vehicle/hour/lane-kilometer

Speed

Halt Vehicles

Alg1

(a) Average waiting time.

0

200

400

600

800

1000

1200

100V 600V 1200V

Ti
m

eL
os

s(
s)

Number of vehicle/hour/lane-kilometer

Speed
Halt Vehicles
Alg1

(b) Average time loss.

0

10

20

30

40

50

60

100V 600V 1200V

De
pa

rt
De

la
y(

s)

Number of vehicle/hour/lane-kilometer

Speed

Halt Vehicles

Alg1

(c) Average depart delay.

0

300

600

900

1200

1500

100V 600V 1200V

Du
ra

tio
n(

s)

Number of vehicle/hour/lane-kilometer

Speed

Halt Vehicles

Alg1

(d) Average trip duration.

Fig. 2: Statistics on different monitors

0

200

400

600

800

1000

1200

100V 600V 1200V

W
ai

tin
g

tim
e(

s)

Number of vehicle/hour/lane-kilometer

0,2/0,2/0,2
0,2/0,2/0,05
0,1/0,1/0,1
Alg1

(a) Average waiting time.

0

200

400

600

800

1000

1200

100V 600V 1200V

Ti
m

eL
os

s(
s)

Number of vehicle/hour/lane-kilometer

0,2/0,2/0,2
0,2/0,2/0,05
0,1/0,1/0,1
Alg1

(b) Average time loss.

0

10

20

30

40

50

60

100V 600V 1200V

De
pa

rt
De

la
y(

s)

Number of vehicle/hour/lane-kilometer

0,2/0,2/0,2
0,2/0,2/0,05
0,1/0,1/0,1
Alg1

(c) Average depart delay.

0

300

600

900

1200

1500

100V 600V 1200V

Du
ra

tio
n(

s)

Number of vehicle/hour/lane-kilometer

0,2/0,2/0,2
0,2/0,2/0,05
0,1/0,1/0,1
Alg1

(d) Average trip duration.

Fig. 3: Statistics on different units

0

100

200

300

400

500

600

100V

W
ai

tin
g

tim
e(

s)

Number of vehicle/hour/lane-kilometer

100s
300s
600s
800s
1000s
Alg1

(a) Average waiting time.

0

100

200

300

400

500

600

100V

Ti
m

eL
os

s(
s)

Number of vehicle/hour/lane-kilometer

100s
300s
600s
800s
1000s
Alg1

(b) Average time loss.

0
1
2
3
4
5
6
7
8
9

10

100V

De
pa

rt
De

la
y(

s)

Number of vehicle/hour/lane-kilometer

100s
300s
600s
800s
1000s
Alg1

(c) Average depart delay.

0
100
200
300
400
500
600
700
800

100V

Du
ra

tio
n(

s)

Number of vehicle/hour/lane-kilometer

100s
300s
600s
800s
1000s
Alg1

(d) Average trip duration.

Fig. 4: Statistics on different periods

level algorithm based on average vehicle speed or waiting
queue length. To extend the measurement to cover the whole
roads, we use the number of vehicles with speed of less
than 0.1m/s (halting) on each lane instead of waiting queue
length. We test and compare the two metrics in our evaluation.
Adaption period: As mentioned in section. IV, we test
different adaptation period, i.e., 100s, 300s, 600s, 800s and
1000s to find out the best period for adapting the threshold of
the intersection level algorithm. We set the test interval as such
so the lights phases can be tuned upon a appropriate period.
Adaption unit: We also test different adaptation unit, i.e.,
how much a change being made to a threshold value in each

action. Unlike other works, we do not assume a specific
threshold works best for all scenarios. Here we test on dif-
ferent adaptation units of default value/increment/decrement,
i.e., 0.2/0.2/0.2, 0.2/0.2/0.05 and 0.1/0.1/0.1. To be noted,
authors in [13] use 0.1 as the default threshold value.

B. Simulation Results

We evaluate the performance based on the following met-
rics: average waiting time (time in which the vehicle speed
was below 0.1m/s), average time loss (time lost due to driving
below the ideal speed), average depart delay (time the vehicle
had to wait before it could start his journey due to lack of road

SmartEdge'19 - The Third International Workshop on Smart Edge Computing and Networking

853

space), and average trip duration. Unless stated differently, all
of our tests are one-hour long and we use the approach with
adaptation period: 300s, adaptation unit:0.2/0.2/0.2, monitor-
ing metric: average speed by default. And in all the tests, we
use the intersection level algorithm (without Algorithm. 1) as
a comparison approach.

First, Figure. 1 to Figure. 4 all show that our system
improves all the performance metrics in all the scenarios of
100V/h/lane − km. On the other hand, in the two extreme
scenarios of 600 and 1200 V/h/lane − km, our system
provides very limited help, even minor controversial impact
in some cases (Figure. 1d). This shows that our system can
alleviate traffic congestion in normal scenarios. However, in
extremely bad scenarios (600V and 1200V/h/lane-km), the
traffic is so congested that there is nothing much we can do to
help. For instance, the average waiting time reaches 1200s in
127-traffic-light scenarios (Figure. 1a), which is about 75% of
the average trip duration. This is obviously beyond the scope
that traffic light control can help with.

Next, Figure. 1 shows that ERL can provide considerable
improvement in 67-light map. In 127-light map, the improve-
ment becomes much smaller. This shows that our work fits
small scale maps, in accordance with our expectation. Because
we wanted to realize fast control feedback in distributed edge
servers, each of which covers a small area. Only within a
small area, the amount of collected data allows fast DNN
training and tuning. Cloud collects data at a larger scale but
provides much slower DNN training as a result. As such, cloud
service certainly cannot provide DNN training and control
feedback as fast as ERL. Figure. 2 shows that monitoring the
number of halting vehicles provides better performance than
average speed. Figure. 3 and Figure. 4 show that approach unit
0.2/0.2/0.2 and period 800s outperform others.

As a summary, ERL trains DNN based on one-hour traffic
data within 9m30s on average. Therefore within every 10
minutes, ERL is able to update the DNN based on previ-
ous hourly traffic data. The improvement in our evaluation
includes decreasing at most 48.71% average waiting time,
39.49% time loss, 3.12% depart delay and 32.77% trip
duration (Figure. 4), on the map of central New York
area that contains 67 traffic lights with normal congestion

VI. CONCLUSION

In this work, we present ERL, an architectural framework
for traffic lights optimization. Our system exploits the low la-
tency of Edge servers to provide fast DNN training and control
feedback. Thanks to its layered architecture and algorithm,
ERL runs optimization at intersection, neighborhood and city
level that allow for different fine-grained and scale of traffic
control. As a first step, we evaluate the first two layers of
optimization in this work. Requiring only ordinary hardware,
ERL can decrease 48.71% average waiting time at normal
congestion scenario. Unlike other works, we propose the
architectural algorithm and select threshold of phase control
as the action target. With this indirect control methodology,

level (100V/h/lane-km).
we enable the coupling of neighboring lights adaptation and
decrease the dimension of action space. allowing ERL to scale
to city block size with fast training and control feedback.

As a first step, we explore the performance of the algorithm
on intra ES area level. In the future work, we will focus on
improving the intra ES area algorithm and evaluate inter ES
traffic optimization.

REFERENCES

[1] G. Cookson and B. Pishue, “Inrix global traffic scorecard,” INRIX
Research, February, 2017.

[2] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, C. Chen et al., “Data-
driven intelligent transportation systems: A survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639,
2011.

[3] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang et al., “Traffic flow
prediction with big data: A deep learning approach.” IEEE Trans.
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[4] R. L. Bertini, S. Hansen, A. Byrd, and T. Yin, “Experience implementing
a user service for archived intelligent transportation systems data,”
Transportation research record, vol. 1917, no. 1, pp. 90–99, 2005.

[5] Y. Ding, C. Chen, S. Zhang, B. Guo, Z. Yu, and Y. Wang, “Greenplanner:
Planning personalized fuel-efficient driving routes using multi-sourced
urban data,” in Pervasive Computing and Communications (PerCom),
2017 IEEE International Conference on. IEEE, 2017, pp. 207–216.

[6] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive traffic signal
control: Deep reinforcement learning algorithm with experience replay
and target network,” arXiv preprint arXiv:1705.02755, 2017.

[7] W. Genders and S. Razavi, “Using a deep reinforcement learning agent
for traffic signal control,” arXiv preprint arXiv:1611.01142, 2016.

[8] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforce-
ment learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3,
pp. 247–254, 2016.

[9] X. Liang, X. Du, G. Wang, and Z. Han, “Deep reinforcement learn-
ing for traffic light control in vehicular networks,” arXiv preprint
arXiv:1803.11115, 2018.

[10] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju, “Arve: Aug-
mented reality applications in vehicle to edge networks,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications. ACM, 2018,
pp. 25–30.

[11] A. Barisone and D. Giglio, “A macroscopic traffic model for real-
time optimization of signalized urban areas,” 41st IEEE Conference on
Decision and Control, pp. 900–903, 2002.

[12] D. Krajzewicz, E. Brockfeld, J. Mikat, J. Ringel, C. Rossel, W. Tuch-
scheerer, P. Wagner, and R. Wosler, “Simulation of modern traffic
lights control systems using the open source traffic simulation SUMO,”
In Proceedings of the 3rd Industrial Simulation Conference, Berlin,
Germany, pp. 229–302, 2005.

[13] E. Brockfeld and P. Wagner, “Agent Based Traffic Signals Regulating
Flow on a Basic Grid.”

[14] B. Abdulhai, R. Pringle, and G. J. Karakoulas, “Reinforcement learning
for true adaptive traffic signal control,” Journal of Transportation
Engineering, vol. 129, no. 3, pp. 278–285, 2003.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[16] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[17] DELL, “Poweredge c4130 rack server optimized for gpus and
co-processors,” 2018. [Online]. Available: https://www.dell.com/en-us/
work/shop/povw/poweredge-c4130

[18] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[19] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-

opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[20] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
Ieee Pervas Comput, vol. 7, no. 4, pp. 12–18, 2008.

SmartEdge'19 - The Third International Workshop on Smart Edge Computing and Networking

854

