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Abstract—Efforts to leverage the benefits of Deep Learn-
ing(DL) models for performing inference in resource constrained
embedded devices is very popular nowadays. Researchers world-
wide are trying to come up with software and hardware accel-
erators that make pre-trained DL models suitable for running
the inference phase in these devices. Apart from software and
hardware accelerators, DL. model partitioning and offloading to
Cloud or Edge network servers is becoming more and more
practicable with increasing importance of Edge Computing. DL
inference workflow partitioning and offloading can augment
software / hardware acceleration for improved latency and energy
efficiency in resource constrained embedded systems. Efficacy of a
computation offloading to system is dependent on proper profiling
of timing and energy required for processing DL algorithms. In
this work we implement a DL inference offloading system using
Raspberry Pi 3 based robot vehicle with a hardware accelerator
from Intel (Neural Compute Stick). We report the workload
partitioning approach, detailed experimental results and perfor-
mance improvements achieved. We demonstrate that the current
approach of DL execution profiling without considering dynamic
system load of the edge device results in sub-optimal partitioning
of DL algorithm and provide a solution approach to that.

Index Terms—Deep learning, Acceleration, Embedded, Infer-
ence, Edge Computing, Fog Computing

I. INTRODUCTION

Deep Learning [1] (DL) has acted as an accelerator to
our journey towards a data driven world by minimizing
the role of domain specific and tedious feature engineering
and allowing high performing pre-trained models to be used
for newer datasets with relatively low re-training. However
DL inference phase, which is used for classification and/or
prediction requires fair amount of system resources (com-
pute, memory, cache etc.) to run in real time. Efforts to
leverage the benefits of DL models for performing inference
in resource constrained embedded devices is in focus since
past few years. Researchers worldwide are trying to come
up with software and hardware accelerators that make pre-
trained DL models suitable for running the inference phase
in these devices. Software transformations typically include
model compression [2]-[4], quantization [5], [6], approxi-
mation, network pruning and coming up with new smaller
network architectures [7] with comparable efficacy. Hardware
friendly optimizations like matrix multiplication factorization,
data path optimization, parallel operations (e.g. convolutions)
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are some of the areas that attracted attention [8], [9] - paving
the way for commercially available hardware accelerators
for DL inference. Partitioning and distributing workload is
successfully applied to accelerate diverse embedded appli-
cations [10]-[14]. DL model partitioning and offloading to
Cloud or Edge network servers is a complementary approach
to these accelerations and can be applied over and above
these transforms. Such partitioned DL inference is becoming
more and more practicable with increasing importance of Edge
Computing and may be required in following scenarios:

o while using a large pre-trained model that may not fit
hardware accelerator memory,

o inference rate required is not achievable even using
accelerators and

o the embedded device has certain other tasks to perform
along with DL inference.

In this work we focus specifically in reviewing , analysing
and implementing DL inference offloading technology. We
discuss the DL inference offloading process, state of the art
(SoA) and its technology enablers in detail. We implement
a DL inference offloading system using Raspberry Pi 3 [15]
(Rpi) based robot vehicle, USB connected Intel Movidius
Neural Compute Stick [16] (NCS), a hardware accelerator for
DL inference.We report the workload partitioning approach,
detailed experimental results and performance improvements
achieved. We demonstrate that the current approach of DL
execution profiling without considering dynamic system load
of the edge device results in sub-optimal partitioning of DL
algorithm and provide a solution approach to that. Throughout
this article we use the term DNN to refer to any deep neural
network like CNN [17], RNN etc., edge device to refer to
the network end embedded systems like robots, autonomous
vehicles, wearable devices and edge server to refer to the
untapped resources in network edge that can act as offloading
servers, e.g. smartphones, gateways, MEC servers [18]. The
rest of this paper is organized as follows: in section II DNN
Execution Offloading and the enablers for that are discussed
in detail along with the SoA. In section IIl we present the
experimental setup, experiments performed and the detailed
inferences. Section IV concludes the paper.
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II. DNN EXECUTION OFFLOADING

In this section we discuss the major technical enablers
for accelerating DNN inference time by partitioning between
constrained embedded edge devices and edge/Cloud servers.

A. Execution Profiling

Profiling DNN execution time and power requirement is
critical for designing effective offloading strategies, by taking
informed decisions about whether or not to offload part of a
DNN inference pipeline. The de facto standard in this regard
is the layer-wise profiling and offloading of DNNs. Profiling
the inference process layer by layer for each and every DNN is
impracticable and hence researchers try to build generalized
prediction models for predicting execution time, power etc.
for different types of layers on different classes of hardware as
depicted in Fig. 1. Linear regression based models are popular
in this context as those are lightweight in terms of system
resource consumption and can be easily built from structure
of the network and different configuration parameters.
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Figure 1. Execution profile and prediction - standard practice

Neurosurgeon [19] uses configuration parameters like input
and output size, number of neurons and number of convolution
operation across all filters (for Convolutional layers) and
represent the layer-wise workload of different layer types in
Giga FLOPS (Floating Point Operations / Second). It uses
these models to predict the execution time of any layer of that
type during at DNN inference time.

In FastDeeploT [20] authors show that the relationship
between network structure and configuration is non-linear
and trivial linear regression models over the entire model
are unable to predict execution time accurately. Source of
these nonlinear relationship are code level optimizations in
DNN inference libraries (data alignment, parallel operations,
loop unrolling etc.) and memory / cache access patterns. To
solve the above problem, authors use a tree structured linear
regression model that divides the network into discrete regions,
where within each region standard linear regression can be
used to build prediction models for DNN layer execution
time prediction. The independent variable is formed using

features from FLOPs; input, output and intermediate memorys;
and number of parameters in the model for fully connected,
convolution and recurrent type layers.

In [21] the model size is added to the standard explanatory
variables in this context and provide the regression equations
for layer latency prediction.

In [22] computation and Bluetooth communication latency,
energy is profiled for wearable devices and smartphones. The
prediction models are built using decision trees and linear
regression. In this work the smartphone play the role of
offloading server.

In [23] authors present extensive results and insights on
running CNN and FC networks on different SoCs used in
mobile phones, however they do not build any prediction
models of execution time and power consumption.

B. Partitioning Strategy for Offloading

DNN partitioning is an important enabler for offloaded
execution. Partition points in a DNN data flow graph can be
determined with target of energy and/or latency minimization.
As shown in Fig. 2, partitioning can be targeted for Edge-
Cloud hierarchy.
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Figure 2. Partitioning points targeted for Edge-Cloud hierarchy

The standard approach for layer wise partitioning is predict-
ing the processing latency, data communication latency and
energy for each layer of a DNN and finding the optimum
point that minimizes both. As this decision is made at the data
source, i.e., constrained edge device - lightweight optimization
algorithms are required.

In [24] authors propose a design guideline for partitioning a
CNN at the end of the last convolutional layer where the data
communication requirement is less and the fully connected
layers requiring high run-time memory, are executed in the
server side.

In [25] the models trained using BranchyNets [26] are
used for implementing the partitioning. To implement such
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partitioning in real systems, the computation graphs of com-
mon run-time libraries like TensorFlow, Caffe needs to be
partitioned in any case.

The standard strategy for partitioning used in [19], [22],
[25] is finding out the cumulative latency/energy for each
partition at each layer level and perform linear search to get
the minimum out of those.

III. EXPERIMENTS ON DNN EXECUTION OFFLOADING

A. Experimental Setup

For our experiments we use two types of configurations. In
the first configuration I Raspberry Pi 3 [15] is used as the edge
device and smartphones, laptops, Nvidia Jetson Tx2 [27] are
used as edge servers. In the second configuration II Raspberry

Table I
EDGE DEVICE AND EDGE SERVER CONFIGURATIONS-1
Edge Server | GFLOPs |  Edge Device | GFLOPs |
Rpi-3b 2 Rpi-3b 3
Rpi-3b 2 iPhone-6 10
Rpi-3b 2 Xeon-E3-1246 PC 20
Rpi-3b 2 Jetson Tx2 50

Pi 3 [15] with Intel Movidius Neural Compute Stick [16],
a hardware accelerator for DNNSs, is used as the edge device
and Nvidia Jetson Tx2, Intel Xeon based server class machines
are used as edge servers. FLOPs benchmark is done through

Table 11
EDGE DEVICE AND EDGE SERVER CONFIGURATIONS-II
Edge Server | GFLOPs | Edge Device | GFLOPs |
Rpi-3b + NCS 36 Intel i7-7500U PC 44
Rpi-3b + NCS 36 Xeon-E5-2695 PC 130
Rpi-3b + NCS 36 Xeon-E5-2696 PC 330

LINPACK [28], emphVFP Bench(iOS). We have observe that
there is close correlation between the FLOPs benchmark and
DNN execution profile in most of the cases. However, for
fine grained profiling we use the techniques mentioned in
section II-A.

We selected three different pre-trained models for our
experiments as given in table III along with the edge de-
vice only execution time in the two different configurations.
Of these three models Squeezenet [29] is fastest - suitable
for running inference in constrained edge devices (1.24M
params). Inception V3 [31] is the most sophisticated 311 layer
model (23.83M params), requiring huge system resources and
Alexnet [30] mid-sized CNN with 25 layers.

Table III
DNNS USED FOR BENCHMARKING
Net Name Layers | Time(ms) Time(ms)
‘ Rpi-3b ‘ Rpi+NCS ‘
Squeezenet 69 2032 48
AlexNet 25 3200 91
Inception-v3 311 7000 326

B. Benchmark Results and Discussion

In this section we discuss the DL partitioning algorithm and
the effect of partitioning a few popular pre-trained networks.
Let us consider that the processing latency at Edge device and
server node for each layer [ of a N layered DNN is given
by P and P} respectively. For the data transfer latency let
us consider that the output activation of a layer [ be of size
D, bytes. We consider the channel establishment time to be
«a, for one packet (Maximum transfer Unit) of M bytes and
[ to be the transmission time per byte. Based on layerwise
profiling and the regression models (detailed in section II-A)
built from those benchmark results, we implement a function
predict_latency that can predict the processing latency of
a DNN layer at runtime. Using the above parameters the
following linear search algorithm 1 finds the optimum point
of partition: We predict the partition points and use those for

Algorithm 1: Algorithm for Partition Selection

1 Algorithm: PartitionSelection

Input: Parameters M, «, (3, finite sets of: edge
processing latency of each layer
P¢ ={Pg,Ps,... P}, Cloud processing
latency of each layer P¢ = {P{, Ps,... P},
output transfer size for each layer
D ={Dy,D,,...D,}, and properties and
configurations for processing latency prediction
for each layer
L cfg={L_cfgy,L_cfgs.... L cfg,}
Output: The layer number around which partitioning
yields best latency or energy

2 begin

3 for : < 1 to N do

4 Pf + predict_latency(L_cfg;);
5 ¥Ti(—[]\;}"'a+Di'ﬁ;

6 for : < 1 to N do

7 Piora < 0;

8 Piora < 0;

9 PART + 0;

10 for j < 1to i do

1 L Pioar < Pt + P

12 for j<i+1to N do

13 L Piorar < Prota + P

14 | PART; « P, + Pl + 15
15 | return argmin{PART'}

making the offloading decision for each of the CNNs and
measure the resulting inference rate. In our experiments, we
emulate different interconnection network speeds on top of
a Wi-Fi network. The Alexnet CNN is always partitioned at
the first pooling layer after the first convolution in both the
configurations - with a slow Rpi and much faster Rpi with NCS
connected via USB. the partition point selection with respect to
the Alexnet architecture is shown in Fig. 3 and Fig. 4 The base
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inference rate for Alexnet in Rpi is 0.3fps in Configuration-
I (Fig. 5) which increases to around 3fps with offloading.
Though the edge device inference rate in configuration-II
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Figure 5. Configuration-I - Alexnet - Inference rate

is around 11fps, it also gets six fold improvement due to
offloading (Fig. 6. The inference rates shown in the results
are not frame processing rates, which are much slower as due
to other activities like getting image frames from Rpi camera,
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Figure 6. Configuration-II - Alexnet - Inference rate

getting output and generating bounding box and displaying
frames in an video object detection setup.

The trend for Squeezenet partitioning is also in the first
pooling layer (Fig. 7) with the only exception when the feature
map upload time is very high, where the partition point is
chosen at fire5 module (Fig. 8). The base inference rate
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for Squeezenet in Rpi is 0.5 fps in configuration-I (Fig. 9)
which gets 4x improvement due to offloading (Fig. 10). The
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Figure 9. Configuration-I - Squeezenet - Inference rate
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Figure 10. Configuration-II - Squeezenet - Inference rate

Rpi+NCS configuration, denoting high end edge device gets
3x improvement.

The Inception V3 CNN in Configuration-I and II shows a
trend of full offloading or offloading just after first convolution
if bandwidth and processing power of the edge server are
high (Fig 11). However, when the bandwidth is lower the
Edge processing is preferred for Configuration-II with NCS
(Fig. 12) (processing happens till mixed-2 inception module)
and somewhat preferred for Configuration-I (processing hap-
pens till conv4). This model, in configuration-II has a base
inference rate of 3fps (Fig.13) and gets around 8x improvement
(Fig.14). From this we conclude that larger the size of the
model, more is the scope of overall latency reduction due to
offloading.

From our experiments we infer that, if the Edge Server is
fast (two to ten times) and network bandwidth is more than
16Kbps , offloading will always improve the performance. We
observe that the effective bandwidth for uploading the feature
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maps from the Rpi, was quite slow and ranged between 8 Kbps
to 1 Mbps maximum. This is in sharp contrast to the standard
uplink speed of 4G and Wi-Fi connections. The connection
setup time and power management of the wireless transceivers,
seems to be the reason for this effective speed. From this we
can draw the following conclusions:

o If the effective upload speeds are high, as observed in
5G application scenarios [32] - Enhanced Mobile Broad-
band(eMBB), Massive Machine Type Communication
(mMTC) and Ultra-reliable and Low Latency Commu-
nications (uURLLC), DNN partitioning will possibly be
required only in case of network outage and unavailability
- in all other cases DNN execution will be offloaded fully
in one hop connected edge server.

e There is a need for transforming the DNN inference
pipeline into stream processing to gain high uplink band-
width advantage. In its current form DNN inference acts
on a single frame grabbed from input video camera.

In our experimental setup given in Fig. 15, we perform a
object recognition test on a Raspberry Pi3 + NCS based
robot vehicle, developed by us. This vehicle navigates and
simultaneously recognizes objects. We use the partition
point based offloading scheme on this device but achieve
only around 5fps (refer Fig. 16), much lesser than the
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expected 15fps inference rate that we observed in our
experiments.

Figure 15. Raspberry Pi3 with NCS based robot vehicle that navigates and
recognises objects

C. Design Guideline for DNN Profiling

On checking the system load details we observe that the
navigation algorithm, camera handling take up CPU and
memory, increasing the latency of the partial DNN inference
pipeline. This is common in most of the embedded devices

o
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Figure 16. Inference rate for Object recognition by navigating robot vehicle

which follow sense-analyze-respond cycle. Based on this we
recommend a design guideline of taking into account the
dynamic system load of edge device along with the predicted
DNN execution latency while choosing the partition points,
which none of the earlier systems do. Such profiling can be
achieved in two ways:

o Taking system load as a parameter to the regression
models built in section. II-A and running the DNN
profiling under simulated load scenarios

o Use the system load factor to scale the processing latency
in edge and Cloud resource.

Though load scenarios in a embedded environment is often
known (e.g. video processing, display handling and navigation
for our robot), it is often impracticable to track all such
scenarios. Thus we use system load as a factor to scale
the processing latency in edge device. As explained in the
article [33], for a Rpi based system we use Linux Operating
System’s (OS) loadavg command to get processor load. As we
are using a run-time partition selection for a task that has a
processing latency much lesser than a minute, it is appropriate
to use a loadavg for last one minute. That value denotes
the cumulative number of processes that are either running
currently or are ready for running in last one minute. We use
loadavg value averaged by the number of cores (Quadcore for
Rpi 3) and use that factor to scale up the edge processing
latency, when load average is more than one. We modify
the partition selection algorithm 1 by adding a line after line
four, as depicted in Fig. 17, where average load is obtained
using a suitable OS function call. By applying this scaling
the edge execution latency takes into account the dynamic
system load and we achieve around 10fps in our Rpi robot
setup (Fig. 15), which is 2x faster than the implementation
using edge processing latency values as is.

2 begin

3 for i < 1to N do

4 P¢ < predict_latency(L_cfg,);
b .

5 IDie A loadavg_per_core’

6 T, D -a+D;-B;

7 for i < 1to N do

P, tal A 0;

to

Figure 17. Modified partition Selection Algorithm

IV. CONCLUSION

In this paper we implemented a execution offloading system
for Deep Learning inference phase. We experimented with
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a embedded System on Chip along with a DL inference
accelerator and demonstrated that intelligent offloading can
be useful for both resource constrained embedded systems,
as well a more capable edge devices. We discussed the State
of Art in this research area and outlined several challenges
and insights, which when taken into account, may result in a
better system design for DNN inference offloading. In future
we would like to design a DNN profiling system that precisely
models dynamic system load of Internet of Things devices that
follow sense-analyze-actuate cycle and use that for offloaded
execution of different DNN variants.
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