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Abstract— In this paper, a software-based simulator for the
deployment of base station-equipped unmanned aerial vehicles
(UAVs) in a cellular network is proposed. To this end, the
Google Earth Engine platform and its included image processing
functions are used to collect geospatial data and to identify
obstacles that can disrupt the line-of-sight (LoS) communications
between UAVs and ground users. Given such geographical
information, three environment-aware optimal UAV deployment
scenarios are investigated using the developed simulator. In the
first scenario, the positions of UAVs are optimized such that
the number of ground users covered by UAVs is maximized.
In the second scenario, the minimum number of UAVs needed
to provide full coverage for all ground users is determined.
Finally, given the load requirements of the ground users, the
total flight time (i.e., energy) that the UAVs need to completely
serve the ground users is minimized. Simulation results using a
real area of the Virginia Tech campus show that the proposed
environment-aware drone deployment framework with Google
Earth input significantly enhances the network performance
in terms of coverage and energy consumption, compared to
classical deployment approaches that do not exploit geographical
information. In particular, the results show that the proposed
approach yields a coverage enhancement by a factor of 2, and
a 65% improvement in energy-efficiency. The results have also
shown the existence of an optimal number of drones that leads
to a maximum wireless coverage performance.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), or drones have recently

attracted significant attention as a promising approach to

enhance wireless communication performance [1]–[5]. When

equipped with wireless base station hardware, drones can

supplement the coverage provided by existing cellular infras-

tructure. The mobility of drones facilitates the creation of

line-of-sight (LoS) links with users, ensuring optimal con-

nection strength. This ability, coupled with the reliability and

autonomy of drones, lends UAVs attractive qualities to service

providers. In particular, UAVs are an effective approach in

emergency scenarios such as disaster relief, when unplanned

power outages may compound with the increased need for

communication, and Internet of Things (IoT) applications [6],

where the quantity and low transmit power of devices may ne-

cessitate closer-ranged wireless communications. Meanwhile,

UAVs can also be used to complement existing terrestrial

cellular systems by bringing additional capacity to crowded

areas during temporary events. Furthermore, drones can be
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deployed to provide necessary wireless connectivity to rural

areas in which the presence of large-scale ground wireless

infrastructure is limited.

To effectively deploy drones drone base stations in wireless

networking applications, there is a need for efficient simulators

that can simulate different use-case scenarios and ground

environments. Though many simulators have been developed

for terrestrial base stations [7], [8], only some are suited

specifically for the analysis of three-dimensional, ad hoc

networks [9]. These are typically implemented as extensions

of the general network simulators [10], that operate in two di-

mensions. UAV-enabled networks are highly dynamic and thus

require a proper integration of the movement of UAVs into the

simulation environment. Moreover, analysis of these networks

is made more challenging by the uncertainty of environmental

variables affecting propagation, as well as highly dynamic

interference. To account for these UAV features, many models

implement probabilistic expressions based on environment

type, i.e., rural, urban, or dense urban [11]. Thus, the ability

to identify obstacles by processing satellite images can have

immense value in that drone simulations can become more

deterministic, depending on the accuracy of image processing.

While there has been a notable number of works on UAV

deployment, most of them ignored the potential use of real

geographical information for optimal placement of UAVs. For

instance, the authors in [12] studied the coverage maximization

problem with minimum number of drone base stations. In [13],

the deployment of an aerial UAV base station for maximizing

sum-rate and power gain in a wireless network is studied.

The work in [14] studied the trajectory design for drone BSs

while using a 3D city map information. These studies use

variations of the probabilistic models introduced above, and

thus, are not suited for simulation of real-world environments.

In contrast to previous studies on UAV deployment, we extract

environmental information with great precision by using image

processing tools in Google Earth Engine. Subsequently, we

build a drone deployment simulator that accepts buildings’

locations as inputs, and adaptively determines the optimal

positions of the drones for maximizing wireless connectivity

in various scenarios.

The main contribution of this paper is a novel simula-

tion framework for environment-aware deployment of mul-

tiple drone base stations that provide wireless connectivity

for ground users. In particular, by exploiting geographical

information extracted from the Google Earth Engine, we
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determine the locations of buildings that disrupt LoS. Then,

we use our simulator to investigate three key UAV deployment

scenarios. First, we study the optimal placement of drones for

maximizing the number of covered ground users. In the second

scenario, we aim to provide full coverage for ground users by

using a minimum number of drones. Finally, given the load

requirements of users, we analyze the optimal deployment of

drones for which the total flight time of drones needed to

service the users is minimized. Simulation results reveal that

our proposed framework that exploit buildings’ information

on an area in Virginia Tech’s campus using Google Earth

yields a significant improvement in the coverage and energy

efficiency of the drone-enabled wireless networks. Moreover,

our results show the existence of an optimal number of drones

that maximizes the wireless connectivity.

The rest of this paper is organized as follows. In Section II,

we present the system model the drone deployment scenarios.

In Section III, we describe the developed feature (i.e., obstacle)

extraction method from Google Earth. Simulation results are

presented in Section IV and conclusions are drawn in Section

V.

II. SYSTEM MODEL AND DRONE DEPLOYMENT

SCENARIOS

Consider a set L of L single-antenna wireless users located

within a given geographical area. The location of a user i ∈ L
is given by (xi, yi). In this area, a set M of M quadrotor

drones are used as flying base stations to provide downlink

wireless service to ground users, as shown in Figure 1. The

location of a drone j ∈ M is given by vj = (xD
j , yDj , hj).

Each user i can be served by one drone j that provides

the strongest downlink signal-to-interference-plus-noise-ratio

(SINR) for the user such that γij = argmax
j∈M

γij and γij ≥ γth

where γij is the SINR downlink between user i and drone j

and γth is threshold SINR required by the user to successfully

have wireless service. Here, the SINR for user i that connects

to drone j can be given by:

γij =
ηPjd

−α
ij

∑

u∈Iint

ηPud
−α
u + σ2

, (1)

dij =
√

(xi − xD
j )2 + (yi − yDj )2 + h2

j , (2)

where α is the path loss exponent, σ2 is the noise power, η

is the path loss constant. dij is the distance between drone-

BS j and a given user i. Also, Iint is the set of interfering

drone-BSs.

We assume that users have fixed locations and that drones

can move to certain locations to service the users. Our goal is

to optimally deploy the drones, i.e., calculate optimal locations

to provide the wireless service in each of the following

scenarios.

A. Maximizing the Number of Covered Users

In the first scenario, our goal is to maximize the number

of covered users under limited resources (available drones).

Drone

 ϴ

LoS

( , )x y

Ground user

h

( , )( , )( , )( , )( , )( , )( , )( , )

NLoSNL

undund

Fig. 1: System model for drones’ deployment.

This scenario captures emergency scenarios, e.g., flooding or

power outage, or highly unusual wireless service demand, e.g.,

a fair or a sports event in a stadium. In such cases, the goal

of using drones is to provide wireless service to the largest

possible number of users. Covering every user in these cases

might not be possible due to very high data demand that will

require more drones than what is available. Determining the

number of drones that can be used in these scenarios depends

on the number of available drones and the expected coverage

in this geographical area. In emergency cases for example,

when more than one geographical area is affected and in

need for urgent coverage, drones are to be deployed in these

areas according to the percentage of ground users that can be

effectively covered with connectivity by the drones.

In this scenario, the number of users is fixed to L and the

number of drones is fixed to M . The goal is to find the optimal

locations of the drones vj , ∀j ∈ M to maximize the number

of covered users. Let ij be an indicator of whether or not

user i is connected to drone j such that:

ij =







1 if j = argmax
j∈M

γij and γij ≥ γth,

0 if otherwise.
(3)

The problem can then be formulated as:

max
L

∑

i∈L

∑

j∈M

ij (4)

s. t.
∑

j∈M

ij = 1, ∀i ∈ L. (5)

The constraint in (5) guarantees that every user is connected

to only one drone.

B. Full Coverage with a Minimum Number of Drones

In this next scenario, every user needs to be covered using

the minimum number of drones. Here, unlike the previous

scenario, we do not assume limited resources. This scenario

usually occurs in public safety and pre-disaster awareness situ-

ations in which every user needs to be informed by a disaster

mitigation plan. For example, in pre-disaster evacuation, we

need to make sure that every user is aware of the upcoming

danger in a timely-manner. This can help improve the commu-

nity resilience against these type of disasters. Covering every

UNAGI'19 - Workshop on UNmanned aerial vehicle Applications in the Smart City: from Guidance technology to 
enhanced system Interaction

869



user (i.e., full coverage) can be achieved by deploying drones

in the targeted geographical area. However, as deploying these

drones is usually costly, we need to ensure full coverage while

minimizing the number of drones, and, hence the cost.

The goal is to calculate the minimum number of drones

required to achieve full user coverage to the L available users.

This is achieved by calculating the optimal locations of the

drones vj , ∀j ∈ M to achieve full coverage of the users. We

use the same indicator ✶ij as defined in the previous scenario.

The problem can then be formulated as:

min
M

∑

j∈M

∑

i∈L

✶ij (6)

s. t.
∑

j∈M

✶ij = 1, ∀i ∈ L, (7)

∑

i∈L

✶ij = L. (8)

The first constraint ensures that every user is connected to

only one drone and the second constraint ensures that all the

users are connected to drones.

C. Minimizing Flight Time of Drones in Serving Users

In this third scenario, each user needs to download some

data using the wireless service and we are interested in

minimizing the hover time (service time) of the drones to

satisfy this data load for every user. This scenario captures

the case in which the consumed energy is of importance as

the drones can provide wireless services for only a limited

period of time [15]. One example scenario is the case in which

the drones are to be deployed in a geographical area that

is far from their source and, thus, the drones will have to

consume a significant portion of their energy for traveling to

the destination. The remaining amount of energy (that will be

used to serve the users) needs to be used in the most effective

way possible so as to satisfy the demand of the users.

Each user, among the L users, is assumed to have a load

of data given by βi bits that needs to be satisfied. A drone j

can transmit data to a user i with a rate bij bits/second that

depends on γij . The time spent by a drone j to serve a user

i can then be calculated as:

tij =
βi

bij
. (9)

The total hover time of a drone j can then be calculated

as the summation of the times spent to serve all the users

connected to this drone. Let Nj be the set of all users

connected to drone j, ∀j ∈ M. Then, the hover time for

a drone j ∈ M will be is given by:

tj =
∑

i∈Nj

βi

bij
. (10)

The goal in this third scenario is to find the optimal locations

of the drones to minimize the overall hover time of all drones

given that the load of each user needs to be satisfied. The

problem can be formulated as:

min
M

∑

j∈M

∑

i∈Nj

βi

bij
(11)

s. t.
∑

j∈M

✶ij = 1, ∀i ∈ L (12)

∑

i∈L

✶ij = L. (13)

The constraints are similar to the previous scenario. In this

scenario, when every user is connected to a drone, then every

user will be in a set Nj of a specific drone j such that:

⋃

j∈M

Nj = L. (14)

Then, the problem formulation of (11) will minimize the

overall hover time while ensuring that the total load of users

is satisfied.

III. GOOGLE EARTH ENGINE SIMULATOR FOR OBSTACLE

LOCATION EXTRACTION

To analyze the aforementioned scenarios, using a ground

environment-aware approach, we have developed a drone

network simulator using MATLAB that takes as input the

locations of buildings. To determine these, we now explore

the use of Google Earth Engine, a platform that is suitable for

analysis and representation of geospatial data. Earth Engine

incorporates multiple datasets and image processing tools. The

simplest way to use the Earth Engine is through its built-in

JavaScript IDE, which we explore in this work. Python is

also supported through an API. The platform is well-suited

for our application because of the image processing potential,

allowing us to estimate and refine network parameters, and

the intuitive interface through which users can supervise the

building detection process.

Various building detection algorithms have been developed,

with cited precisions ranging from 80-90% [16]–[18]. Ac-

curate algorithms rely on a combination of feature extrac-

tion techniques and machine learning. For our application,

we circumvent the time and resources needed to train such

programs by exploiting the map view imagery supplied by

Google. In this view, satellite imagery is simplified, wherein

features like buildings are identified in the same color. This

greatly facilitates automated building identification, under the

assumption that Google’s own identification techniques are

accurate.

To extract building locations from map view, we use edge

detection. This is implemented most readily in Earth Engine

through Canny edge detection, a reliable and very common

algorithm [19], [20]. Canny detection applies separate filters to

detect horizontal, vertical, and diagonal edges, and computes

the gradient magnitude. Finally, non-maximum magnitudes are

suppressed, thinning the detected edges. In general applica-

tions of edge detection, image noise must be accounted for
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Fig. 2: Results of building identification imposed over

satellite imagery for a region of the Virginia Tech campus.

through the application of Gaussian filters; even then, error is

expected. However, the simple, noiseless images provided by

map view are ideal candidates for edge detection, and edge

detection yields accurate results.

To extract lines from this output, we apply the Hough

transform to the Canny image [19]. This step is important

to correct imperfections in the Canny output. The Hough

transform uses an accumulator to detect the presence of a line,

then implements a voting algorithm to identify its parameters.

Now, we sample and trace each line, noting changes in

direction which correspond to building corners. At this point,

we can also manually adjust the locations of any vertex. To

examine the accuracy of this process we outlined buildings on

map view and overlaid them onto the corresponding satellite

imagery, shown in Figure 2.

Evidently, through this method, buildings are approximated

fairly well. Over five test cases that we performed, this process

correctly outlined about 95% of each building’s correct area,

and falsely identified an additional 12%. These figures are

consistent with the 80-90% accuracy bounds given in the

studies cited above. Additionally, we note that this method

tends to overestimate building area. This is permissible, and

possibly preferable, for UAV simulations, in which drones

should not be deployed within a buffer area around buildings,

due to the threat of collision. The limitations of the geometric

approximation of buildings in this manner include irregular

building shapes, specifically ones with rounded sides. Earth

Engine only supports polygons; thus, rounded edges must

be represented by some number of vertices, adding inherent

error. In summary, we have shown that for building location

identification, analysis of Google map data is consistent in

accuracy with rigorous processing of satellite imagery, but

can be performed at reduced computational cost. Thus, while

using minimal computational resources, we have identified the

locations of buildings, which will be used as inputs into our

developed Google Earth-enabled MATLAB simulator so as to

analyze the proposed environment-aware wireless drone base

station deployment scenarios.

IV. SIMULATION RESULTS

For our simulations, we consider a 200 m × 200 m area over

which users are randomly distributed. Users are assumed to be

at ground level, at which z = 0. The locations of buildings

are known, defined by their vertices at {V1, V2, ..., VN}, where

each vertex consists of an x and y coordinates. For these

simulations, we consider a three-building configuration derived

from Figure 2 which is based on a real area from the Virginia

Tech campus. As we did not estimate building height during

image processing, we model the buildings’ z-coordinates as

random variables, constrained between 10 and 20 meters,

heights appropriate for five-story buildings. Other simulation

parameters are listed in Table 1.

To evaluate any arrangement of M drones over NC candi-

date points,
(

NC

M

)

calculations are required. As NC correlates

directly with simulation precision, and hence a large NC is

desirable, the computational complexity can quickly become

infeasible. To circumvent this, the following heuristic is imple-

mented. We first discretize the target area into some number

NC of UAV candidate points, where NC is sufficiently small to

enable rapid evaluation. We form the binary power threshold

matrix T in which entry (m,n) indicates whether the user

at location (xn, yn) receives above a given power P t
min from

candidate point m. Note that we do not yet account for inter-

ference, noise, or line-of-sight; our current goal is to establish

starting points for further optimization. We incrementally place

drones at the candidate points is maximized; in other words,

at points with the most potential links.

Now, we further discretize the area around each chosen

candidate point. Given {V1, V2, ..., VN}, we calculate whether

a LoS exists by sampling the line segment connecting user i

and each candidate point and checking whether any sample

point lies within the bounds of a building. If so, we introduce

an additional attenuation factor, η, to that potential channel.

Finally, we consider interference and noise, and simultane-

ously solve for the optimal locations of each UAV such that

the number of users above a given SINR threshold, γ, is

maximized.

Figure 3 shows the percentage of covered users as the

SINR threshold needed for connectivity varies (this result

corresponds to the deployment scenario in Subsection II-A).

Clearly, as the SINR threshold or equivalently the receivers’

sensitivity increases, the coverage performance of drones

decreases. This due to the fact that satisfying a higher SINR

requirement is more challenging thus fewer number of users

can be covered by the drones. For instance, when increasing

the SINR threshold from 2 dBm to 8 dBm, the number of

covered users decreases by 63% in the proposed approach. In

Figure 3, we also compare the performance of the proposed

deployment approach with a case in which deployment is

done based a probabilistic path loss model. In the probabilistic

model, a drone can have a LoS link to a ground user with a

specific probability, which is given by [21]:

PLoS,i = b1

(

180

π
θi − 15

)b2

, (15)
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Fig. 3: Percentage of covered users versus SINR threshold.

Fig. 4: An illustrative figure for drones’ deployment.

where θi is the elevation angle (in radians) between the drone

i and a user located at (x, y). Also, b1 and b2 are constant

values which depend on the environment.

As we can see from Figure 3, our approach outperforms

the probabilistic case. In our approach, the locations of

buildings are known and deterministic as they are obtained

from the Google Earth Engine. In the probabilistic case,

however, we do not have a complete information about the

buildings. Therefore, by exploiting additional information

about the environment, our deployment approach leads to

a higher coverage performance than the probabilistic-based

deployment. As shown in Figure 3, the number of covered

users can be increased by up to a factor of 2 while adopting

the proposed environment-aware deployment strategy. As an

illustrative example, in Figure 4, we show visual output of

drone placement, using known building locations.

Figure 5 shows the impact of the number of drones on the

coverage performance for various network sizes (this result

corresponds to the deployment scenario in Subsection II-B).

Clearly, the coverage performance decreases as the number
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Fig. 5: Percentage of covered users versus number of drones.

ground users increases. For a higher number of users, it will

be more likely that drone-users communication links will be-

come blocked by obstacles. Consequently, the communication

reliability and, hence, the coverage performance degrades.

Figure 5 also shows how the number of covered users varies

by changing the number of drones. In this case, there is a

tradeoff in deploying more drone base stations for providing

wireless connectivity. By increasing the number of drones, the

coverage can be improved as the drones are placed closer

the ground users. However, while using more drones, the

aggregated interference increases which reduces the users’

SINR. Therefore, there exists an optimal number of drones

for which the coverage is maximized. For instance, as we

can see from Figure 5, the optimal number of drones for

serving 100 users is 6. This figure allow us to determine the

minimum number of drones needed to meet a certain coverage

requirement. For example, here, a full coverage for 50 users

can be achieved by optimally deploying 8 drones over the

considered geographical area.

Figure 6 shows the total flight time of drones needed for

completely servicing the users (this result corresponds to the

deployment scenario in Subsection II-C). From this figure,

we can see that the flight time of drones increases when the

number of buildings (i.e., obstacles) increases. With more ob-

stacles in the environment, drone-to-user communications will

experience lower SINR due to the blockage and shadowing

effects. As a result, the transmission rate will decrease and the

drones must fly longer in order to transmit a required amount

of data to each user. From Figure 6, it can be seen that the

total flight time of drones increases by 45%, in the proposed

deployment case, when the number of buildings increases from

1 to 4. Hence, servicing users located in a harsh environment

requires longer flight time, more energy consumption, and thus

using more capable drones.

In Figure 6, we compare the performance of our proposed

environment-aware deployment approach with a random de-

ployment case in which drones are randomly deployed over

the geographical area. As we can see from Figure 6, the
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Table I: Simulation parameters.

Parameter Description Value

fc Carrier frequency 2 GHz

Pi Drone transmit power 1 W

No Total noise power spectral density -170 dBm/Hz

N Number of ground users 200

B Bandwidth 1 MHz

b1, b2 Parameters in probabilistic channel model 0.36, 0.21
β Load per ground user 10 Mb

proposed optimal deployment can yield up to a 65% flight

time reduction compared to the random deployment case.

Therefore, the proposed approach enhances energy-efficiency

of the considered drone-enabled wireless network.

V. CONCLUSION

In this paper, we have investigated the problem of

environment-aware deployment of drone base stations that

provide wireless connectivity to ground users. To this end,

first, we have developed a drone network simulator that uses

the Google Earth Engine in order to extract key information

about buildings in the considered geographical area. Then,

we have studied the optimal deployment of drones in three

practical scenarios. In the first scenario, we have determined

the optimal locations of drones such that the number of

covered ground users is maximized. In the second scenario, we

have minimized the number of drones needed to ensure a full

coverage for all users. Finally, we have minimized the flight

time of drones required to completely service the users by

satisfying their load requirements. Our results have shown that

the proposed deployment framework significantly enhances

the drone wireless system performance in terms of coverage

and energy efficiency. Moreover, our simulation results have

demonstrated existence of an optimal number of drones for

which the wireless coverage is maximized.
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