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Abstract—One crucial step toward improving any pattern
recognition model is refining the data (feature extraction) and
simplifying it (feature selection) for the classifier. In this paper,
we investigate the impact of feature reduction on the performance
of HAR. We collected step data from two subjects and answer
research questions related to the impact of feature reduction in
terms of performance, generalizability and varying classifiers.
Our findings indicate feature reduction can reduce the number
of features by close to 90%, while only having an impact of 1-2%
in model performance. Moreover, we find that feature reduction
can impact the generalizability of HAR models. Lastly, we find
that feature reduction does not have a major impact on most
classifiers examined. Our results are useful for designers of HAR
systems to help them optimize their models while ensuring high
performance.

Index Terms—Data Reduction, Feature Selection, Human
Activity Recognition, Wearable, IMU, Inertial Sensors, Neural
Network, Linear Regression

I. INTRODUCTION

Pervasive sensors that can be conveniently worn and ubiq-
uitously used aiming at a wide range of potential applications
including various individual’s health monitoring, rehabilita-
tion, and intelligent assistance [1]. These sensors have begun
to reduce in size, become more accurate, and more popular
(e.g., Smart phones and Wearables) [2], leading to exten-
sive research that improves algorithms inferring meaningful
knowledge from sensor data. In recent years, many studies
in Human Activity Recognition (HAR) using Wearables have
been carried out that provides a promising performance [3] [4],
[5] [6].

The process of HAR, in the well-known form, contains five
main phases [4], [5] including 1)Data collection, 2)Segmenta-
tion, 3)Feature extraction, 4)Feature selection, 5)Prediction.
First, the data is acquired by motion sensors in form of
data streams. Next, these streams will be segmented using
the time windows technique (e.g., a window with the length
of 5 seconds shifting every 200ms). In the third, the useful
features are extracted using Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), or any other
feature extraction schemes. At this step, a feature may be
considered as relevant if the classifier improves performance
using it; and, conversely, redundant if it does not improve the
performance of the classifier [1]. Then, finding a set of features

containing the Maximum Relevant and Minimum Redundant
features (mRMR) is the main goal in feature selection phase.
This data is used to train a classifier; Then, it is utilized in
predicting one or more specific activities.

Previous work introduced a wide range of features that
could be beneficial for HAR. Time/frequency domain features,
auto correlation features, histogram bins are some examples
of such features. One simple solution is to give all features
to the classifier, whether they are relevant or not. However,
collecting and calculating features comes at a computational
cost. Particularly in the case of HAR, which typically is done
on resource constrained Wearables. Moreover, using more
features than needed could lead to many unwanted side effects
including lower model performance, overfitting and higher cost
and execution time [7]–[9]. Therefore, we need a procedure
to refine and intelligently select the best features.

The goal of this paper is to examine the impact of feature
reduction on wearable-based HAR. Specifically, we aim at
examining the trade-off between feature reduction and model
performance (RQ1), model generalizability (RQ2) and dif-
ferent classifiers (RQ3). We perform our experiments using
step data collected using the Neblina system-on-module chip.
Generally, our data contains more than 2,000 steps from two
different subjects. We extracted a total of 119 different features
from the Neblina, which were used to examine the impact of
feature reduction on HAR.

Our findings showed that feature reduction can reduce the
number of features by close to 90%, while only having an
impact of 1-2% in model performance. Feature reduction can
impact the performance of the general models (i.e., that are
cross-subject), however, which subject a model is trained on
does matter. Feature reduction does not have a considerably
impact on most classifiers examined.

The rest of the paper is organized as follows. The state
of the art data reduction methods for HAR are presented in
Section II. Section III sets up our case study, providing details
about the dataset, feature extraction & selection and classifiers
used. Section IV presents our results. Section V discusses the
relation between features and sensors. Section VI concludes
the paper.
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Fig. 1: Main approach for Human Activity Recognition. Two red squares show sensor positions on the thigh and foot of the
subject. The green blocks show the feature selection phase.

II. RELATED WORKS

Comprehensive reviews about the subject of feature
reduction are available in the literature. In [4], the accuracy
of 293 classifiers are evaluated using 14 datasets involving
accelerometer sensor data. Similarly, the approach in [10] uses
principal component analysis (PCA) to feed the classifiers.
Since the dataset contains recording data under different
setups, using PCA, they extract those features that are
independent from x/y/z axes and consequently independent
from sensor orientation. Then, it lets them to treat identically
with different datasets. They figured out the ensemble
methods of KNN provides the best recognition rate and
Decision Tree (DT) provides the worst. They also showed,
on average, the best and worst positions for attaching sensor
are right thigh and left lower arm, respectively. Similarly,
Shoaib et al. [6] performed an experiment with 10 subjects
and 5 sensor positions to show impact of sensor positions
on activity recognition. Their results are also confirmed that
right pocket ( upper thigh) and wrist are respectively the best
and worst positions. Comparing different featuresets, they
also concluded that selecting the best sensor (accelerometer
vs gyroscope) to achieve best performance depends on body
position, activity type, and classifier.

The authors in [11] extracted three feature-sets including
time-domain, frequency domain, and wavelet-domain statis-
tics. They employed an ensemble selection on five feature se-
lection methods and showed that their best results is achieved
using time domain features. Zhang et al. [12] extracted some
self-designed features called physical features and showed
that these features have more contributions rather time-domain
features to the recognition system. Introducing a multi-layer
classifier, they also show that different feature-sets are appro-
priate for different activities.

More approaches on feature selection methods such as re-
cursive feature selection [7], correlation based feature selection
(CFS) [13], Independent Component Analysis (ICA) [14], and
Local Discriminant Analysis (LDA) [15], targeting HAR, also
exist in the literature.

As mentioned above, existing works mostly employ differ-
ent forms of feature selection to find best performance of
their model. In this work, we investigate feature selection
attributes independently and in relation with the whole model.
For feature selection method introduced in this work, the most
relevant previous work is from Ienco et al. [16], who similarly
divides the process into two stages and uses a hierarchical

clustering followed by a wrapper method. They show that their
method (is not for HAR) on various datasets outperforms filter
and wrapper methods. Furthermore, using the dendrogram of
features provided by hierarchical clustering gives a semantic
view of feature space. However, they do not explain how
much their method can reduce the size of feature set and how
it effects on the generality of the models. In this work, we
address these aspects as well as we will have a deeper view
on advantages of data reduction on HAR pipeline..

III. STUDY SETUP

Our main approach follows a typical HAR classification
solution, as shown in Figure 1. The approach is composed
of five main phases described in the following:

A. Data Collection

In order to examine the effectiveness of our feature selection
method on data reduction, we first need to collect data of
certain activities. Specifically, we selected walking in flat
steps, ascending up stairs and descending down stairs [17]
as our target activities. We repeat the experiments over two
subjects and over two sensor positions.
Senors. We leveraged Motsai’s Neblina system-on-module
(SoM) solution. Neblina is a customizable module that
is equipped with a tri-axial gyroscope, accelerometer, and
magnetometer in conjunction with a 32-bit processor and
2X256KB of flash memory [18]. The data come from Neblina
composes of the following features:

Acceleration data (ax,ay,az). Gyroscope data(gx/gy/gz).
Magnetometer data (mx/my/mz). Force data, i.e., the ac-
celeration vector minus gravity (fx/fy/fz). Euler Angle data
(yaw/roll/pitch). We also calculate cosine for angle of roll and
pitch and call them roll2 and pitch2. Time stamp (time). Step
type (st) which contains the labels corresponding to each step
type. The collected data has been recorded on Neblina, and is
later downloaded to a Windows machine. The sampling rate
was set to 50Hz [1]. The total steps in each trial is given by
Table I.
Experiments. We collected data from two male participants
between the ages of 25 and 30. Similar to prior studies [12],
we attached the sensor to the thigh [19] and foot of each
participant and perform the trials at various indoor and outdoor
locations without supervision. The sensor was strapped by an
elastic belt on the front of right thigh. Two sensor positions
are shown in Figure 1.
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TABLE I: Total number of steps based on subjects, activity
types, and sensor positions.

Sensor Position Thigh Foot
Activity Type Up Down Flat Up Down Flat
Subject A 249 228 420 206 219 386
Subject B 265 250 770 222 242 504

B. Feature Extraction and Selection

To divide the stream into segments corresponding to each
step, we leveraged a pedometer [20]. Since the time-domain
features have already been shown to be quite effective for HAR
as opposed to frequency-domain and wavelet features [6], we
have chosen the following time-domain features for our anal-
ysis, namely mean, median, variance, standard deviation, root
mean square, mean absolute deviation and median absolute
deviation. Then, we have 17X7=119 feature-dimension values
for each step span.
Feature Selection. There are many different techniques that
can be applied to select features. These methods generally are
divided into three major categories including a) filter methods,
b) wrapper methods, and c) embedded methods [21]. In this
work, we employ an embedded method that is a heuristic ap-
proach orientated toward the notion of minimizing redundancy
and maximizing relevancy (mRMR). Explicitly, our method
benefits from two inexpensive blocks (green blocks in Figure
1) to find an optimum set of features. Firstly, it filters highly
correlated features out. Next, it ranks them, using GLM, on
a basis of how much features are statistically significant and
takes the top ones. These blocks are explained as follow:
Hierarchical Clustering block. The main goal of this block
is to find those features that have the minimum redundancy
between them. In other words, it aims at discovering a set of
lowest correlated features. To achieve that, we use hierarchical
clustering (HC) [22] method, and measure the Spearman
correlation coefficient through all features. Then, we need to
split the tree into number of clusters. For this reason, we have
to define a cut-off line in the dendrogram. In this work, as in
[23], we put the cut-off line on 0.7 and it returns 15 clusters.
It means that the correlation among clusters are between -0.3
and +0.3. At the second step, we get a representative feature
from each cluster. To aim this, using the ability of features in
predicting each other, we employ Goodman and Kruskal [24]
algorithm to measure which feature is more appropriate to be
kept to represent others. Then, we take those representatives
that are better in predicting other features in a certain cluster.
Using this method, we end up with 91 features (out of 118).
General Linear Model block The main goal of this block
is to measure the features in terms of their contribution in
predicting response. With aim of this goal, we train a linear
model feeding features received from prior block. Then, using
p-value (< 0.05) we take the statistically significant features
in the trained model. Taking features with p-value less than
significance level, we will have more certain candidates to be
fed with the classifier at the following phase.

Dataset Up
50% up - 50% down & flat

Dataset Down

50% down - 50% up & flat

Dataset Flat

50% flat - 50% up & down

Training set

Model Up Model Down Model Flat
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T
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Fig. 2: Ensemble Strategy. Training m models to detect M
activities. In voting block, the best prediction gets selected.

C. Classification Model

In this section we explain the mechanism of our classifier.
More classifiers are also taken into consideration in RQ3.
Janidarmian et al. [5] and [25] applied an ensemble of clas-
sifiers on HAR and showed that it outperforms other conven-
tional classifiers in dealing with more difficult problems.
Following the state-of-the-art, we used an ensemble of GLMs
in this work. Intuitively, instead of training each classifier
for all classes, we assign each class (step type) to one
classifier. Therefore, to predict 3 step types, we train 3 models
(individual models in Figure 2). Then, using a voting classifier
which is an ensemble of classifiers method, we combine their
results into one final decision. In this work, we choose the
class with the highest score through the voting block. For
example, for certain input data, if individual models predict
as following: Pup = 0.8, Pdown = 0.5, Pflat = 0.2, the
voting block infers ”Up” as the final prediction. To improve the
classification, during training, each individual model has been
provided with an exclusive dataset biased toward a certain step
type. However, during testing phase, only one dataset supplies
all classifiers.

D. Performance Evaluation

Adopting a 10-folds cross validation strategy, we divide
our data into ten folds; Nine folds to train the model and
one left to test it. One step will be considered as unknown
if the highest score is gained by more than one individual
model (e.g., Pup = Pdown). Since our test set contains no
unknown labelled data, any unknown step prediction will be
considered as false negative (FN). With the same rational, we
will not have true negative (TN) result in our evaluation. To
identify true positive (TP), we consider all correct step type
predictions. And to identify false positive (FP), we consider all
incorrect step type predictions. Using the predicted value for
each step, we are able to calculate precision ( TP

Tp+FP and recall
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( TP
TP+FN ). We then present our results using Accuracy, F-

measure, and Mis-Classification to evaluate the performance.
Accuracy: Measures the rate of correctly classified step
and non-steps types over all steps. It is calculated as

TP+TN
TP+FP+TN+FN
F-measure (F1): Presents the harmonic mean between
precision and recall. It is calculated as 2 ∗ precision∗recall

precision+recall
Mis-Classification (MC): Measures the rate of incorrectly
classified steps and non-steps over all of steps.

IV. CASE STUDY RESULTS

In this section we present the results of our experiments that
answer our research questions.

A. RQ1- How much does our feature reduction impact perfor-
mance?

As motivated earlier, most wearable devices that are used for
HAR are resource constrained. Hence, reducing the amount of
features (and consequently data to be collected) may improve
the power consumption, latency, memory usage, etc. of these
wearable devices. At the same time, the general belief is
that reducing the number of features fed to a classifier also
negatively impacts accuracy [11]. The focus of this question
is - what is the tradeoff between the amount of data we can
reduce and the performance impact.

Similar to prior work, we use accuracy, F1-measure and
the misclassification rate [26] to measure the impact of per-
formance and use the number of features used in the model
to measure the data savings. To compare the two setups, we
conduct one experiment using all of the features available to
us and then repeat the same experiment using our reduced set
of features. The differences in performance and data savings
between the two experiments are then reported.

Table II shows the results of our experiments for the two
subjects, A and B (results of the full model are shown in
parenthesis). In each Table, the first line is result of the
ensemble model (considering all steps) followed by results
of individual models, i.e., step up, down and flat. From the
Table II we see that we are able to reduce the number
of features by 92% ±1% (from 119 to 8) features, which
impacts the performance of models for both subjects by
approximately 1 - 2%. Interestingly, the flat walking model
works better after the feature reduction for both subjects.
The step up model has the lowest accuracy (97%, which is
still quite high) among the models examined. Comparing the
results of two subjects, at the same level of performance, the
total number of features for subject A is 30% lower than
subject B (8 vs. 12 features), which indicates that the reduction
may be subject specific. Either way, for both subjects though
the reduction in features is significant.

B. RQ2- How does the feature reduction impact the general-
izability of the model?

As we have seen from the results of RQ1, different individu-
als do not perform the same HAR activity in the same way [5].

TABLE II: Impact of data reduction on performance of model.
The numbers in parenthesis are results of base-line model
(using 119 features). The model ”All Steps” means that it
can classify all three step types.

(Subject A)

Model No. Features Accuracy F1 MC

All Steps (119)8 (0.99)0.98 (1.00)0.99 (0.01)0.02

Step Up (119)8 (0.97)0.95 (0.95)0.93 (0.03)0.03

Step Down (119)7 (0.99)0.99 (0.99)0.99 (0.0)0.01

Flat walking (119)9 (1.00)1.00 (1.0)1.00 (0.0)0.01

(Subject B)

Model No. Features Accuracy F1 MC

All Steps (119)12 (0.99)0.98 (1.00)0.99 (0.01)0.02

Step Up (119)11 (0.97)0.99 (0.95)0.99 (0.03)0.03

Step Down (119)13 (0.99)0.99 (0.99)0.99 (0.00)0.01

Flat walking (119)12 (1.00)1.00 (1.00)0.99 (0.00) 0.01

The pattern of doing the activity depends on many factors,
including the physical body of the subject, his/her level of
fatigue, experiences, and so on. Consequently, a model trained
on one subject may not be applicable to another subject [6],
[27]. In our case, we are interested in examining the impact
of the feature reduction on the generality of the model.
Cross-subject validation uses the data from one subject to
train the model, then tests the model on data from another
(independent subject). In this paper, as our target is to examine
the impacts of feature reduction, hence, similar to the case of
RQ1, we repeat the cross-subject validation twice, once with
all features that are available to us and once with the reduced
set of features.

Table III shows results for both experiments (results of the
full model are shown in parenthesis). In the top Table, we
train on data from subject A and test on subject B’s data
and vice versa for the Table on the bottom. First, we see that
the feature reduction does decrease performance, however, its
performance is comparable. Second, we notice that although
the model trained on subject B’s data has 3 more features (less
data reduction) than the model trained using subject A’s data
(15 against 12), it does not provide a higher accuracy (81% vs.
80%). Overall, we conclude that although feature reduction
does impact the overall performance when evaluated across
subjects, the impact is not significant. That said, again,
which subject you train and test on does impact the results.

C. RQ3- How does feature reduction impact different classi-
fiers?

In most related work, the authors evaluate their feature
selection method using different classifiers to identify the
best model. However, different classifiers are affected by
feature reduction differently. Prior work examined various
different classifiers and showed that they deal with feature
dimensionality differently [28]. However, their setting was
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TABLE III: Cross-subject validation results on two subjects.
A vs B means testing model of subject A on data of subject
B.

Subject A v.s. Subject B

Model No. Features Accuracy F1 MC

All Steps (119)12 (0.93)0.80 (0.97)0.89 (0.07)0.20

Step Up (119)15 (0.93)0.86 (0.90)0.81 (0.03)0.09

Step Down (119)10 (0.97)0.87 (0.96)0.82 (0.03)0.17

Flat walking (119)12 (0.97)0.86 (0.96)0.75 (0.15)0.35

Subject B v.s. Subject A

Model No. Features Accuracy F1 MC

All Steps (119)15 (0.96)0.81 (0.98)0.89 (0.04)0.19

Step Up (119)13 (0.95)0.86 (0.92)0.79 (0.05)0.24

Step Down (119)12 (0.97)0.88 (0.96)0.83 (0.02)0.08

Flat walking (119)20 (0.99)0.84 (0.98)0.73 (0.05)0.26

slightly different since they used PCA, which may reduce
dimensionality, however it is not guaranteed to reduce the
number of needed features since one PC may be a combination
of many features.

Therefore, in this RQ, we investigate the impact of feature
reduction on 6 of the most common classifiers used in HAR.
Again, we build a model using all of the features available to
use and compare that with a model built using the reduced
feature set. We merge the data from both, subject A and B to
perform this analysis. We mostly used the default parameter
settings for the various models, except for the Neural Network
model, in which we used a configuration that was recom-
mended in earlier work [29]. The NN model used a 5-layer
network utilizing two drop-out layers and three dense fully
connected layers. Layers use rectified linear (ReLU) activation
functions except for a Softmax activation on the one-hot output
layer.

Table IV shows the results of our experiment. As we can
see from the Table, the models perform very well, with and
without feature reduction. In terms of F1-measure, GLM, NN
and RF slightly outperform the SVM, KNN and BT models.
That said, all models do not seem to be impacted much by the
feature reduction. In general, the Random Forest model seems
to perform the best overall, and for that model, the feature
reduction only impacts the F1-measure by 1%. Overall, we see
that most models are quite robust to the feature reduction.

V. DISCUSSION AND FUTURE WORK

Limitations. One of our contributions is introducing a feature
selection method that showed a significant result in reducing
data size. However, this method may not provide the best
results as we did not compare its result with any other
conventional feature selection methods. For this reason, more
validation of feature selection method is important future
work. In addition, as showed in RQ2, the result might be
affected by certain subject. A wider range of activities beside
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more number of subjects are required to decrease the impact
of subjects. So, using big enough datasets like [30] will be
considered in our future works.

TABLE IV: Impact of data reduction on six classifiers in-
cluding SVM, GLM, NN, KNN, Random Forest, and Boosted
Tree. The result of base-line model is written in parenthesise
behind the number.

Model N. features Accuracy F1 MC

GLM (119)12 (0.99)0.98 (1.00)0.99 (0.01)0.02

SVM (119)12 (0.98)0.97 (0.99)0.98 (0.02)0.03

NN (119)12 (0.99)0.98 (0.99)0.99 (0.01)0.02

KNN (119)12 (0.98)0.96 (0.99)0.98 (0.02)0.04

Random Forest (119)12 (0.99)0.99 (1.00)0.99 (0.01)0.01

Boosted Tree (119)12 (0.98)0.96 (0.99)0.98 (0.02)0.04

Features vs. Sensors. As we have shown, feature reduction is
a viable way to help save the resources of wearables used
in HAR. However, there is a key distinction between the
features and sensors that are used to derive these features.
Although reducing the number of features used will help save
computation resources, etc., a real gain can be obtained if
we are able to reduce the number of sensors that are on in
these Wearables. Therefore, we ran an experiment to determine
which sensors provided the most contributing features. The
experiment was performed on data from both subjects, and
included all steps in our dataset.

Figure 3 shows the share of each sensor vs. the total
number of features for each of the three sensors on the
Neblina, namely accelerometer, gyroscope and magnetometer.
We observe from the figure that the accelerometer contributes
the highest percentage of features, generally making up close
to 50% of the features at any given point. On the other hand,
the gyroscope and magnetometer, have similar contributions,
which does not exceed 40%.
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These results indicate that for HAR, we have the potential
to not only reduce features, but perhaps do some sensor
optimizations to maximize savings of wearable devices. Such
optimizations are beyond the scope of this paper, however, we
plan to develop such methods and examine the effectiveness
in the future.

VI. CONCLUSION

In this paper, we have investigated the impact of feature
reduction on the performance of HAR. We collected step
data using the Neblina system-on-module solution from two
subjects and have answered three research questions related
to the impact of feature reduction in terms of performance,
generalizability and varying classifiers. Our findings indicate
that feature reduction can have a significant reduction in using
resources while achieving comparable results to a full model.
Our main findings are:

• Feature reduction can reduce the number of features by
close to 90%, while only having an impact of 1-2% in
model performance.

• Feature reduction can impact the performance of the
general models (i.e., that are cross-subject), however,
which subject a model is trained on does matter.

• Feature reduction does not have a major impact on most
classifiers examined.

Our analysis also have showed that the accelerometer con-
tributes most of the features used in HAR models. In the
future, we will be introducing methods that can optimize
sensor operation in order to maximize the resource savings
of Wearables.
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