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Abstract—Uploading vehicle sensor data to support au-
tonomous driving is necessary to understand the current situation
to make the best decision. In this paper, we develop a system
that relies on a peer-to-peer mechanism to obtain information
in a vehicular network. Consider a scenario in which each
vehicle equipped with a camera and communication capability
is responsible to upload new snapshots to a datacenter, and the
datacenter combines the snapshots to create a map. In a naı̈ve
sensor data upload scheme, each vehicle uploads its snapshot
periodically and the datacenter will find out new information and
integrate it to a map. This method might work if only a small
number of vehicles are uploading at the same time. However,
this naı̈ve method is not scalable when dozens of vehicles need to
upload, as the communication bandwidth will be a bottleneck. To
address the challenge, we propose a novel distributed system to
reduce data redundancy. As a result, the bandwidth consumption
between vehicles and the datacenter is reduced as well. The key
idea is to use location information (e.g., GPS coordinates) to
simplify the design and coordination among peers (vehicles), and
rely on computer vision algorithms to remove redundant data and
identify important information to be uploaded. In this paper, we
outline the design of our system and verify the efficacy of our
system through a simulation study.

Keywords – Distributed System, Upload Bandwidth, Peer-
to-Peer, Data Redundancy, Bandwidth Consumption

I. INTRODUCTION

Uploading vehicle sensor data to support autonomous driv-
ing is necessary to understand the current situation to make
the best decision. For example, a high precision map can be
updated in a timely fashion by uploading sensor information,
e.g., snapshot images, to the datacenter. In this paper, we
focus on the problem of uploading images efficiently to the
datacenter in a vehicular network. Concretely, we aim to
solve the following problem: How do we efficiently create a
panorama image at a fixed location by collecting snapshot
images from nearby vehicles? The panorama application is
useful in understanding current situation and constructing a
highly accurate real-time map. In Section V, we also discuss
how to extend our design to more general applications.

A naı̈ve solution to the problem is for each vehicle to
periodically upload all the images it captures to the datacenter,
which then selects useful images to update the map. There
are two major problems using this approach: (i) the shared
wireless medium might be congested if the network bandwidth
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is constrained, and (iii) the computation workload at the
datacenter might be too high.

Our system is motivated by the observation that using
Vehicular Ad hoc NETwork (VANET), we can improve the
performance by reducing bandwidth consumption and com-
putation burden at the datacenter. The key improvement is
twofold: (i) reducing the data redundancy by exchanging
messages among vehicles, and (ii) distributing the upload
bandwidth among vehicles.

To the best of our knowledge, two works have looked
at similar problems but in a completely different context.
Weinsberg et al. [1] designed a method to prioritize images to
upload new and important information in challenged networks,
i.e., the ones in disaster affected regions. Dao et al. [2]
used an advanced computer vision algorithm to identify key
information to be uploaded to a datacenter. The other related
works are discussed in Section IV.

We share the same intuition – since there is abundant data
redundancy, we need to suppress/defer transfers of redundant
content to reduce the communication bandwidth. One novelty
of our scheme is exploiting vehicles’ GPS information to
achieve efficient coordination. Then vehicles are able to jointly
reduce redundant data and only upload important part of the
images. Through a simulation study, we show that compared
to the naı̈ve solution, the bandwidth consumption is reduced
by a scale factor between 1/2 and 5/6 using our system.

In Wireless Sensor Networks (WSN), in-network aggrega-
tion is extensively studied to reduce the energy and commu-
nication cost, e.g., [3], [4], or ensure security [5]. Effectively,
our system can be viewed as the integration of tree-based
and cluster-based approaches in WSN [3], [4], [5]. The main
novelty of our design is to combine such protocols with image
processing and use location information to improve efficiency.

II. OUR SYSTEM

In this section, we describe our system and two examples
to illustrate the key algorithm used in the system.

A. Targeted Scenario

Recall that we want to create the panorama view from the
snapshot images taken by vehicles near a fixed location. We
envision that vehicles in that location will form a certain type
of “vehicular clouds,” e.g., [6], [7], [8], [9]. As a result, each
vehicle can obtain a membership list of nearby vehicles, i.e.,
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each vehicle knows the set of vehicles that will upload the
images to the datacenter. Moreover, each vehicle maintains an
accurate GPS information and camera orientation. The mem-
bership list allows each vehicle to know whom to coordinate
with. The GPS information and camera orientation allow us to
efficiently “stitch” images together to form a panorama view.
Due to space limitation, please refer to prior work (e.g., [9]) on
how a vehicular cloud is kept intact despite vehicle mobility.

B. Design

The whole uploading process starts with the datacenter
broadcasting a BEGIN message to all vehicles within in
the vehicular cloud. All vehicles process the snapshots they
possess in a distributed fashion and upload resulting image
pieces back to the datacenter. The process ends when the
datacenter receives all image pieces and merges them into
one. Due to space limitation, we only focus on the discussion
of a simple design here, i.e, the process is initiated by the
datacenter periodically. It is possible to further improve our
system. For example, the whole process can be adaptive and/or
initiated by vehicles in the vehicular cloud.

Hierarchical Stitching: A key element of our system is
the hierarchical stitching algorithm presented in Algorithm
1, which uses a tree structure to assign computation and
communication responsibilities. Before running the algorithm,
the vehicular cloud assigns “logical IDs” (identifiers) to each
vehicle with an image to upload. Vehicles with adjacent IDs
should have the maximum overlaps between the snapshot
images. This can be done efficiently using the GPS infor-
mation, camera orientation, and membership list. Roughly
speaking, vehicles with close GPS coordinates and similar
camera orientations will be likely to have similar fields of view.
Vehicular cloud can assign the IDs using this information

Afterwards vehicles know its position in the corresponding
tree given the IDs and “Group Size” (which is a predetermined
parameter that specifies how many images should be stitched
together at the same time). Our hierarchical algorithm then
requires each node in the tree to stitch the images from its
children to remove the overlapping part among children’s
images, i.e., the redundant data.

When uploading images, we again adopt a simple design,
which partitions the resulting panorama image into approxi-
mately even pieces and distribute to every vehicle within the
group, and then every vehicle uploads its image piece to the
datacenter who is responsible for merging the pieces into the
panorama image. The reason is that we want to distribute the
uploading workload evenly to each vehicle in the group to
reduce latency. Obviously this design is not fault-tolerant, and
in the future work, we aim to divide the image in a fashion
that the datacenter can merge the image even if some pieces
are missing. This can be improved by using more complicated
upload schemes as will be discussed in Section V.

1This can be done in several different ways. One is simply choosing the
vehicle with the largest index.

Algorithm 1 Hierarchical Stitching Algorithm
1: procedure DATACENTER
2: n← number of members in the desired group
3: broadcast(BEGIN) to n members of the group
4: wait until receiving n image pieces
5: merge received image pieces into one image
6: procedure VEHICLE
7: k ← pre-determined Group Size
8: wait until receiving BEGIN message
9: group themselves by ID and k

10: select a leader in each group1

11: while more than one leader do
12: Leader:
13: broadcast(REQUEST) to k − 1 members
14: wait until receiving k − 1 images
15: stitch k images into one image
16: group leaders of last round by ID and k
17: Group member:
18: wait until receiving REQUEST message
19: send its image to its leader
20: Leader:
21: divide the final image evenly into n pieces
22: distribute image pieces among vehicles
23: Group member:
24: wait until receiving its image piece
25: send the image piece to the datacenter

Message Complexity Analysis: For n vehicles, the mes-
sage complexity among vehicles is O(n). Suppose each level
of the tree corresponds to one round of stitching. Observe
that for Group Size = k, the tree depth (or height) is
O(logk n) = O(log n), which means that the algorithm has
O(log n) rounds of stitching. Let level 0 denote the leaf level
and level logk n denote the root level. Then for each level i,
the total number of messages exchanged is O(n/ki). Hence,
using the sum of a geometric series and the fact that k is a
constant, the total message complexity is

O(

logk n∑
i=0

n

ki
) ≤ O(n

1

1− 1/k
) = O(n)

Since we require each vehicle to upload a small piece of
the panorama image, the message complexity between vehicles
and the datacenter is O(n).

Salient Features: The first salient feature is that our al-
gorithm reduces the amount of information sent from vehicles
to the datacenter because we remove redundant data, i.e., the
overlapped part among the images. The second one is that we
distribute the stitching workload to several vehicles to reduce
the computation load at the datacenter. Finally, the workload at
each node can be made roughly equal by having an imbalanced
tree where some nodes have smaller number of children.
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Fig. 1. A hierarchical structure for 8 vehicles

C. Example Scenarios

a) Example I: Hierarchical Structure: Referring to the
example in Figure 1, we demonstrate how each leader is
selected and which set of images it needs to stitch. In the
beginning, 8 vehicles are asked to upload their snapshot
images and they obtain IDs 1 to 8 from the vehicular cloud.
These vehicles are represented as leaves in the tree. Here, we
assume that a vehicle with the largest ID will be the leader.
However, other leader election criteria might be used as well.
Then vehicle 2 is responsible to stitch the images from vehicles
1 and 2 in the first round. Vehicle 4 is responsible to stitch the
images from vehicles 2 and 4 in the second round. Vehicle 8
is responsible to stitch the images from vehicles 4 and 8 in
the third round, so on and so forth.

Note that the balanced binary tree in the figure is only
for illustration. The tree structure depends on the number of
vehicles and Group Size.

b) Example II: Algorithm Flow: Figure 2 shows the
algorithm flow and messages exchanged in a scenario of four
vehicles and Group Size 2.

III. EVALUATION

In this section, we describe the prototype implementation
of our framework. Our prototype consists of a central server
which acts as the role of the datacenter. A number of machines
act as vehicles which have snapshot images to be uploaded.
Each “vehicle” process has a front-end and back-end:

• The front-end is implemented in Python with the OpenCV
package, and is responsible for (i) computer vision algo-
rithms such as stitching, and (ii) algorithms to divide,
distribute, and merge the resulting stitched images.

• The back-end is implemented in Golang, and is respon-
sible for communication parts.
Test Image Sets: The images used in this experiment

are from PAnorama Sparsely STructured Areas Datasets
(PASSTA) by courtesy of Computer Vision Laboratory (CVL)
at Linkoping Univeristy [10]. In the following experiments,
we use three sets of images where each vehicle possesses
one image. The images are from the Lunch Room image set
from [10], which were acquired with a Canon DS70 and wide
angle lenses Samyang 2.8/10mm (about 105 degree), with
a resolution of 3548x5472 px (approximately 900 KB). A

panorama head was used to approximate a fixed rotation of
5 degrees around the vertical axis about the optical center of
the camera.

Experimental Setup and Results: The experiments in this
paper are conducted on a single machine for a preliminary
study. Each process is run on either the central server or a
vehicle while these processes communicate through TCP chan-
nels that simulate communication in vehicular networks. A
simulation on a single machine is appropriate for the purpose
of understanding bandwidth reduction – the key benefit of our
mechanism, since in our system, the amount of information
and messaging overhead required is almost identical in both
simulation and a practical scenario. One minor aspect not
considered in our simulation is that in a practical setting, some
control messages may need to be retransmitted due to message
loss. However, compared to image size (around 900 KB), the
size of control messages (a few bytes) is ignorable.

In the paper, we also report latency for completeness,
while the latency observed in our prototype system may
not necessarily be similar to a realistic vehicular network
environment. However, the data shows that even in a not-so-
benign case, the latency does not increase too much using
our system. The reason that a simulation on a single machine
favors naı̈ve method is that transmission is perfect and no
retransmission is ever required. Since our system reduces the
amount of communication between the datacenter and each
vehicle significantly, we envision that in a realistic setting,
the latency of our system will be improved. In the future,
we plan to perform experiments on a testbed consisting of
mobile devices or connected vehicles, as well as simulations
using a network simulator to thoroughly understand how our
mechanism can help mitigate communication latency.

Before we present our simulation data, we define how we
characterize the latency and bandwidth consumption.

• Bandwidth consumption: it measures the total amount of
data transferred from vehicles to the server. Note that it
does not include the data exchanged among vehicles.

• Latency: it measures the time between the event that
the datacenter broadcasts the BEGIN message (line 3 in
Algorithm 1) and the event that the datacenter merges all
image pieces that it receives from vehicles (line 6 in Al-
gorithm 1). Note that it includes both the communication
time (to upload and exchange images) and computation
time (to stitch images together).

Bandwidth consumption and latency results of the first,
second, and third image sets are reported in Figures 3, 4, 5, 6,
7, 8, respectively. We test the scenarios of 4, 6, 8, 10 vehicles
with Group Size 1, 2, 3. Note that under our design, Group
Size 1 is exactly identical to the naı̈ve solution in which each
vehicle uploads its image to the datacenter and the datacenter
performs all the stitching.

Discussion: Not surprisingly, our system greatly reduces
the bandwidth consumption on the datacenter end as shown
in Figures 3, 5, and 7. The best case of reduction is shown
in Figure 7 (with 10 vehicles) which reduces bandwidth
consumption by the scale of approximately 5/6. The worst
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Fig. 2. Algorithm Flow for 4 vehicles and group size 2
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Fig. 3. First image set: Bandwidth Consumption

case of reduction is shown in Figure 3 (with 4 vehicles) which
reduces bandwidth consumption by the scale of approximately
1/2. This is because we truncate large amount of redundant
information, i.e., the overlapped part between images.

As we can observe from Figures 4, 6, and 8, our system does
not incur too much latency (less than 2x in the worst case).
We envision that in a large-scale test where the datacenter is
congested by both communication and computation load, our
system is likely to have better latency.

Group Size does not seem to affect bandwidth consumption
except for one outlier in Figure 5 (the case of 10 vehicles). This
is reasonable, since the resulting stitched panorama images
should be roughly the same. On the other hand, the latency
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Fig. 4. First image set: Latency

analysis is more interesting. There are mainly two factors
affecting latency. First, Group Size affects the depth (or height)
of the tree structure, which affects the number of rounds to
stitch images. Larger Group Size will result into smaller depth,
since each node has more children. Second, Group Size affects
the computation complexity of stitching algorithm. It appears
that the stitching algorithm in OpenCV works more efficiently
with fewer images at a time. This may be due to how the
algorithm detects features from multiple images. These two
factors are interleaving; hence, our results do not imply a
conclusive choice on the best Group Size. Finding the best
option is left as an interesting future work.
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Fig. 5. Second image set: Bandwidth Consumption
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Fig. 6. Second image set: Latency

IV. RELATED WORK

There is a long history of study on improving communi-
cation in challenged or bandwidth-constrained networks. We
only discuss the most relevant systems here. Weinsberg et
al. proposed a novel architecture called Content-Aware Re-
dundancy Elimination (CARE) that maximizes informational
values that a constrained network can offer its users [1]. The
architecture functions by imposing redundancy elimination
on top of the delay-tolerant networks protocol so that any
message is evaluated for similarity before transmission. The
experiments showed that CARE transmits more unique photos
than other similar systems do. Similar to CARE, Uddin et
al. focused on a disaster scenario, and proposed a picture
delivery service that recognizes similarity [11]. PhotoNet
assigns priorities to pictures in an effort to reduce semantic

4 6 8 10
0

2,000

4,000

6,000

8,000

number of vehicles

da
ta

in
k
b

GroupSize=1
GroupSize=2
GroupSize=3

Fig. 7. Third image set: Bandwidth Consumption
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Fig. 8. Third image set: Latency

redundancy such as redundancy between pictures taken at the
same location.

In an effort to eliminate redundant content among images,
Dao et al. presented a framework comprised of 3-phase
similarity comparison [2]. In the first phase, coarse-grained
metadata of images are compared and if no matching is found,
it enters the second phase, where fine-grained features are
compared. The third phase is user manual comparison of
thumbnails. If a matching is found, the upload of an image
is suppressed; otherwise, it shall be uploaded.

Chum et al. proposed and compared two different ap-
proaches to detect near identical images and videos [12]
in scenarios that require fast processing. The first approach
is based on global hierarchical color histograms, while the
second is local feature descriptors. The experiments showed
that a weak approximation to histogram matching consumes
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less storage and yields sufficiently good results. Chum et al.
further extended the research with several novel image and
video similarity measures based on methods such as color
histogram, min-Hash and tf-idf weighting [13].

The focus of our system is completely different from any of
the existing work discussed above. First, we target the scenario
in a vehicular network; hence, we can intelligently use GPS
information for coordination. Second, we focus on using P2P
communication to reduce bandwidth consumption. Third, our
contribution is on the system architecture whereas prior works
focus on computer vision algorithms.

There is also a rich amount of research on vehicular clouds.
The core idea of vehicular clouds is to provide cloud ser-
vices by leveraging computation and communication resources
of connected vehicles. Research topics include integration
with MapReduce-like computation, and information-centric
networking, e.g., [7], [8], [14], [15]. The architecture design
of these works are different from ours, because they targeted
a more general problem whereas our design and the hierar-
chical stitching algorithm are focused on a special family of
problems.

The main research challenges in in-network aggregation in
WSN [5], [3], [4] are on the robust routing protocols and
the construction of forwarding tree or the identification of the
clusters (of the sensor nodes). On the other hand, since our
system is based on the membership protocol from vehicular
clouds, routing and the hierarchical tree can be built easily by
using location information and virtual IDs. Recall that we rely
on ID to allocate the stitching responsibility. In other words,
the focus of this work is mainly on the system design and
integration and evaluation. Moreover, due to the bandwidth
and computation constraints, aggregation in WSN is typically
focused on simple functions, e.g., SUM, MAX, whereas we
target a much more complicated operation – stitching images.

V. SUMMARY AND FUTURE WORK

We designed a new P2P scheme to upload images in a
vehicular network that greatly reduces computation workload
at the datacenter and bandwidth consumption between the
datacenter and vehicles. The key of our system is a novel
hierarchical stitching algorithm which removes redundant in-
formation. Compared to the naı̈ve protocol, our system reduces
the bandwidth consumption by a scale factor between 1/2
and 5/6 while incurring moderate latency from our simulation
study. This paper presents the preliminary study, and we share
some interesting future research directions below.

Our current system does not tolerate failure. For example,
failure of any vehicle can lead to information loss and po-
tentially ruin the stitching algorithm. There are two straight-
forward methods to provide some degree of fault-tolerance.
First, instead of aggressively removing redundant information,
we should allow some “slack” to recover lost information
or computation. One simple mechanism is to have a backup
leader to take over a failed computation. Second, instead
of uploading pieces of the panorama image, we can divide
the panorama with some overlaps between each pieces or

even use coding for failure recovery. Consequently, even if
a vehicle v fails to upload its image, the useful information
it possesses will still be uploaded by other vehicles whose
image overlaps with v’s image or will be recovered from other
coded data. Obviously, these two solutions increase bandwidth
consumption, latency and computation load at each vehicle. An
interesting future work is to find the balance between fault-
tolerance and the metrics of interest.

While we only demonstrate the system that reduces band-
width consumption for stitching images, we envision that it
can be generalized to the applications which usually have
sufficiently redundant data. Many data-intensive applications
could potentially benefit from using our system. For example,
data fusion algorithms can be used to identify and remove
redundant data collected from multiple sensor devices, and
we envision that a variation of our hierarchical algorithm can
significantly reduce the bandwidth consumption as well.
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